Clinical Evidence Requirements for CE certification under the In Vitro Diagnostic Regulation in the European Union

SECOND EDITION, PUBLISHED IN NOVEMBER 2021
Many people contributed to this work, through group discussions, advice and commentaries. We are acknowledging their input and engagement to develop the in vitro diagnostics sector.

We would like to particularly mention the following participants who were heavily involved in the making of this document:

Astola Annika
Bruinsma Anne Marie
Callaerts Geert
Cardoso Rodrigues
Cheillan Frank
Choudhary Mayank
Ekholm Pettersson Frida
Facheris Luisa
Forssten Camilla
Franzen Volker
Gazin Muriel
Giroud Claude
Homann Anke
Hughes Karin
Hughes Richard
Kasturi Roshni
Lindroos Hanne
Love Joanna
Magana Laura
Malcus Carine
Masson Christine
Mechthild Merz
Mescalchin Alessandra
Meyerovich Kira
Neil Adam
Ons Benny
Percivati Stefania
Petruschke Thorsten
Plenert Karli
Plumridge Neil
Punwani Divya
Rousseau Els
Rute Rodrigues Cardoso
Rutter Andrew
Saunders Richards
Steenhuis Pieter
Sweeny Maranna
Thottakam Bensita
Timonen Anne
Torbjörn Johansson
Van den Eede Peter
Van doan Nguyen
Wettmarhauseu Sascha
Wevelsipe Anja
Ylianttila Mervi
Young Emma
Zaugg Christian
Ziegler Saskia
Zoellner Petra

Coordinated by MedTech Europe:

Slobodeaniuc Iana

Published in November 2021
Contents

Welcome to the Second Edition! .................................................................5

Introduction .........................................................................................6
Disclaimer .............................................................................................6

CHAPTER 1 – Intended Purpose/Use ....................................................7

Table 1.1 Components of device’s intended purpose ................................7
Table 1.2 Comparative table between the ‘intended purpose’ requirements of Annex I and Annex II ..........................................................8
Table 1.3 Examples of intended purposes/uses (focusing on clinical evidence aspects) ..........11

CHAPTER 2 – Analytical and clinical performance indicators ...............19

Figure 2.1 Components of clinical evidence according to IVDR 2017/746 .................................................................19
Table 2.1 Possible examples of analytical and clinical performance indicators based on the intended purpose as referred to in the complementary list of examples 3. For abbreviations, please see below ..............................................................................21
Table 2.2 Examples of different intended purposes/use and how they drive the selection of clinical performance indicators, possible study populations, potential study designs, and IVD device examples ..........................................................................................................................22

CHAPTER 3 – State of the Art (in medicine) ........................................25
Table 3.1 Examples of devices that represent state of the art in medicine .......28

CHAPTER 4 – Scientific Validity, Clinical Benefit and Clinical Utility ...30
Figure 4.1 Clinical benefit concept under the IVDR and its distinction from clinical utility ..........34

CHAPTER 5 – Benefit-Risk Requirements & Potential Approaches under the IVDR .............................................................................36
Table 5.1 Hazard identification examples in normal use and from use errors (modified from ISO/TR 24971) 4 ........................................................................................................................................38
Figure 5.1 Flow chart of benefit-risk requirements ................................40
Table 5.2 Review of the benefit-risk from the perspective of PMS ..........44
Table 5.3 Benefit-risk differences across product groups and common IVD purposes ..........45

CHAPTER 6 – Clinical Evidence Levels ..................................................55
Figure 6.1 Risk-based evidence levels for analytical performance, scientific validity, and clinical performance .................................................................56
Figure 6.2 Clinical evidence levels for IVD classes B, C, and D ..........59
Figure 6.3 Flowchart for Clinical Performance ........................................61

CHAPTER 7 – How to demonstrate evidence gained from ‘published/documented routine testing’ ..........64
Table 14.3 PMSF Plan .................................................................................................................. 121
Table 14.4 PMPF plan example 1.............................................................................................. 122
Table 14.5 PMPF plan example 2.............................................................................................. 124
Table 14.6 PMPF Report ........................................................................................................... 125
Welcome to the Second Edition!

The First Edition of the “Clinical Evidence Requirements for CE certification under the In Vitro Diagnostic Regulation in the European Union” was published in May 2020.

It is a collection of questions and answers designed to help manufacturers navigate their performance evaluation obligations under the new IVD Regulation 2017/746.

The questions and answers are the result of the collective wisdom of many regulatory and clinical experts, members of MedTech Europe.

The document is made publicly available to support manufacturers, both within and outside MedTech Europe’s membership, in transitioning to the new Regulation in an aligned and consistent manner.

What is new?
For this Second Edition (eBook2), we have improved the text (spelling, formatting, references) and graphics. More importantly, in addition to the existing chapters – which have the same content as in the First Edition – four new chapters have been added.

**eBook2 updates:**
- new chapters added:
  - Chapter 3 State of the Art (in medicine)
  - Chapter 4 Benefit-Risk Requirements and Potential Approaches under IVDR
  - Chapter 10 Near-Patient Testing
  - Chapter 11 Use of Clinical Data from the Outside of European Union
- new content added:
  - Chapter 9 Companion Diagnostics was completed with two new questions (15, 16, follow-on CDx)
- list of authors – extended to include the authors that developed the new chapters
- spelling corrected
- figures and tables improved:
  - CHAPTER 4 – Scientific Validity, Clinical Benefit and Clinical Utility - Figure 4.1 Clinical benefit concept under the IVDR and its distinction from clinical utility
  - CHAPTER 9 – Companion Diagnostics – Figure 9.3 Clinical benefit and clinical utility concepts under the IVDR for CDx devices
  - CHAPTER 14 – Post-Market Performance Follow-up – Table 14.2 PMPF and PMS requirements

We hope you enjoy the eBook2 and we are looking forward to receiving your feedback at regulatory@medtecheurope.org
Introduction

A questions and answers guide to performance evaluation requirements of the new EU In vitro Diagnostic Medical Devices Regulation 2017/746 (IVDR)

Medical technologies are tightly regulated in the European Union. Before any medical technology can be legally placed on the EU market, a manufacturer must comply with the requirements of all applicable EU legislation and affix a CE mark to their product. Since the 1990s, in vitro diagnostics (IVDs) have been regulated by an EU Directive (IVD Directive 98/79/EC). In May 2017, the In vitro Diagnostic Medical Devices Regulation 2017/746 (IVDR) was published. MedTech Europe, the European trade association representing the IVD industry, is working with our members and the authorities to support companies in complying with the new IVDR by the end of the transition period (2022).

The IVDR contains several provisions that are open to more than one interpretation. This brochure is designed to help stakeholders understand the new Regulation and the important changes it will bring. Where appropriate, information is presented in a Q&A format to make the text as accessible as possible. It reflects MedTech Europe’s best efforts to interpret the IVDR.

Disclaimer

This document represents the understanding of MedTech Europe about the covered topics at the time of publication, and while we have invested considerable time and effort in developing this document, MedTech Europe does not assert that these opinions and interpretations are correct and accepts no legal responsibility for them. Specific legal advice should be sought before acting on any of the topics covered in this brochure. Readers should be reminded that it is ultimately for the courts to interpret legislation.
CHAPTER 1 – Intended Purpose/Use

1) How is the term ‘intended purpose’ defined in the IVDR and how has it changed from the IVD Directive (IVDD)?

The IVDD defines ‘intended purpose’ as the use for which the device is intended, according to the data supplied by the manufacturer on the labelling, in the instructions for use and/or in promotional materials. *IVDD Article 1(2), (h)*

The IVD Regulation defines ‘intended purpose’ as the use for which a device is intended according to the data supplied by the manufacturer on the label, in the instructions for use or in promotional or sales materials or statements or as specified by the manufacturer in the performance evaluation. *IVDR Article 2 (12)*

The new element ‘as specified by the manufacturer in the performance evaluation’ is the decisive difference between IVDD and IVDR.

2) Where can I find a detailed description of ‘intended purpose’ in the IVDR?

Descriptions of ‘intended purpose’ can be found in the instructions for use section in Annex I, as well as in the device description section in Annex II of IVDR.

**Table 1.1 Components of device’s intended purpose**

<table>
<thead>
<tr>
<th>IVDR Annex I, Chapter III, section 20.4.1 (c)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(i)</td>
</tr>
<tr>
<td>(ii)</td>
</tr>
<tr>
<td>(iii)</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>(iv)</td>
</tr>
<tr>
<td>(v)</td>
</tr>
<tr>
<td>(vi)</td>
</tr>
<tr>
<td>(vii)</td>
</tr>
<tr>
<td>(viii)</td>
</tr>
</tbody>
</table>

Most of these elements are repeated in the ‘device description’ section of the technical documentation in Annex II. But it is notable that for the three specific elements, the wording is different, or the corresponding element can be found elsewhere in Annex I, Chapter III.
### Table 1.2 Comparative table between the ‘intended purpose’ requirements of Annex I and Annex II

<table>
<thead>
<tr>
<th>IVDR Annex I, Chapter III, section 20.4.1 ‘The instruction for use shall contain all of the following particulars’ (c) the device’s intended purpose</th>
<th>IVDR Annex II, 1.1 ‘Device description and specification’ (c) ‘the intended purpose of the device which may include information on’</th>
</tr>
</thead>
</table>
| (i) The specific information that is intended to be provided in the context of:  
  - a physiological or pathological state;  
  - congenital physical or mental impairments;  
  - the predisposition to a medical condition or a disease;  
  - the determination of the safety and compatibility with potential recipients;  
  - the prediction of treatment response or reactions;  
  - the definition or monitoring of therapeutic measures;  
  *IVDR Annex I, Chapter III, section 20.4.1 (c)* | (iii) The specific disorder, condition or risk factor of interest that it is intended to detect, define or differentiate  
  *Annex II, 1.1 (c) ‘the intended purpose of the device which may include information on’* |
| The intended user, as appropriate (e.g. self-testing, near patient and laboratory professional use, healthcare professionals);  
  *Annex I, Chapter III, 20.4.1 (e)* | (viii) The intended user  
  *Annex II, 1.1 (c) ‘the intended purpose of the device which may include information on’* |
| For companion diagnostics, the International Non-proprietary Name (INN) of the associated medicinal product for which it is a companion test.  
  *IVDR Annex I, Chapter III, section 20.4.1 (c)* | (ix) For companion diagnostics, the relevant target population and the associated medicinal product(s)  
  *Annex II, 1.1 (c) ‘the intended purpose of the device which may include information on’* |

3) The terms ‘intended purpose’ and ‘intended use’ are both used in the IVDR. Is there any difference in the meaning of the terms?

---

* According to the foreword to all ISO Standards ([https://www.iso.org/foreword-supplementary-information.html](https://www.iso.org/foreword-supplementary-information.html))
  
  - “shall” indicates a requirement
  - “should” indicates a recommendation
  - “may” is used to indicate that something is permitted
Unlike the term ‘intended purpose’, the term ‘intended use’ is not explicitly defined in the IVDR. However, the term ‘intended use’ is used several times throughout the Regulation. This implies that it should not be understood differently from the term ‘intended purpose’.

For example:

- Devices shall be designed, manufactured and packaged in such a way that their characteristics and performance during their intended use are not adversely affected during transport (…) Annex I, Chapter I, section 7
- The characteristics and performances of the device shall be specifically checked if they may be affected when the device is used for the intended use under normal conditions (…) Annex I, Chapter I, section 9 (4)
- The notified body’s assessment of performance evaluations as referred to in Annex XIII shall cover ‘the intended use specified by the manufacturer and claims for the device defined by it (…) Annex VII, section 4.5.4

Both intended purpose and intended use appear in the chapter on performance evaluation plans, stating that both should be specified:

As a rule, the performance evaluation plan shall include at least:
- a specification of the intended purpose of the device (…) (Annex XIII 1.1)
- a specification of the intended use of the device

4) What is the global view on the terms ‘intended purpose’ and ‘intended use’? Are they used interchangeably? How does the global view of both terms impact the IVDR interpretations?

Analysis of the following international documents shows that ‘intended use’ is a synonym for ‘intended purpose’ and is used interchangeably. This has an important influence on the IVDR which explicitly emphasises in recital 5 that international guidance documents from GHTF/IMDRF should be considered to promote global convergence.

For example:

- GHTF/SG1/N045:20083 Principles of In Vitro Diagnostic (IVD) Medical Device Classification
  ‘Intended use/purpose’: the objective intent of the manufacturer; the use of a product, process or service as reflected in the specifications, instructions and information provided by the manufacturer (Chapter 4.0 Definitions)

- IMDRF Essential Principles of Safety and Performance of Medical Devices and IVD Medical Devices/January 2018
  ‘Intended Use/Intended Purpose’: The objective intent of the manufacturer regarding the use of a product, process or services as reflected in the specifications, instructions and information provided by the manufacturer. (GHTF/SG/N77:2012) (Chapter 3.0 Definitions)

3.31 ‘intended use/intended purpose’: objective intent of an IVD manufacturer regarding the use of a product, process or service as reflected in the specifications, instructions and information supplied by the IVD manufacturer.

5) How should the ‘intended purpose/use’ elements be presented in the instructions for use?

The instructions for use (IFU) section in Annex I does not specify a mandatory structure/layout. Therefore, how the applicable ‘intended purpose/use’ elements are presented in the IFU depends on the manufacturer’s concept of IFU. For example, these elements may be distributed over several sections or combined in one. If they are not combined, it may be helpful to describe where the applicable elements can be found, for audit purposes.

Annex I, Chapter III, section 20.4.

6) What is the relationship between a product’s ‘intended purpose/use’ and a ‘product claim’?

A device-specific intended purpose, as indicated in the IFU and labelling, serves as the basis for all product claims.

The manufacturer is prohibited from misleading the user or the patient through a product claim (e.g. text, names, pictures, figurative or other signs appearing on the label, in the IFU, or in promotional or sales materials) about the device’s ‘intended purpose/use’, safety and performance.

IVDR Article 7

7) How is the ‘intended purpose/use’ linked to the concept of clinical evidence?

The ‘intended purpose/use’ is fundamental to the building of the performance evaluation plan and includes information such as:
- What is detected and/or measured
- It’s function (see Table 1.1)
- The specific information set out in Table 1.1 and 1.2.

Therefore, the ‘intended purpose/use’ directly drives the level of performance evaluation, performance studies and post-market performance follow-up activities.

Annex I, Chapter III, section 20.4.1c; Annex II 1.1.c; Annex XIII Part A and B

It is the manufacturer’s solely responsibility to define a concept appropriate clinical evidence based on the ‘intended purpose/use’ and the environment where the product is used.

See table 1.3 below for a non-exhaustive list of examples. For more information about different levels of clinical evidence, see CHAPTER 6 – Clinical Evidence Levels.
Table 1.3 Examples of intended purposes/uses (focusing on clinical evidence aspects)

**Example 1: IVD device intended to detect magnesium**

<table>
<thead>
<tr>
<th>Intended Purpose/Intended Use</th>
<th>Scientific Validity</th>
<th>Analytical Performance</th>
<th>Clinical Performance Options</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physiological state</strong></td>
<td>To detect and measure magnesium to assess electrolyte/magnesium homeostasis.</td>
<td>Mg$^{2+}$ is a cofactor of many enzyme systems, required by all ATP-dependent enzymatic reactions. It functions as an activator for various physiochemical processes, including phosphorylation, protein synthesis, and DNA metabolism. It is also involved in neuromuscular conduction and excitability of skeletal and cardiac muscle.</td>
<td>Quantitative determination of magnesium concentration in human serum, plasma, and urine with appropriate analytical sensitivity, specificity, precision, etc.</td>
</tr>
</tbody>
</table>
| **Clinical condition**        | To detect and measure magnesium to detect clinical conditions associated with abnormal magnesium levels in the body, hyper/hypomagnesemia. | - Increased serum magnesium concentrations occur in renal failure, acute diabetic acidosis, dehydration, or Addison’s disease.  
- Hypomagnesemia may be observed in inherited disorders of isolated magnesium malabsorption, chronic alcoholism, malabsorption, severe diarrhoea, acute pancreatitis, diuretic therapy, hypertension, and kidney disorders such as glomerulonephritis and tubular reabsorption defects. | Diagnostic/clinical sensitivity and specificity to detect specific clinical conditions e.g. kidney disorders, primary infantile hypomagnesemia, etc. |
| **Clinical condition ‘therapy monitoring’** | To monitor drugs (e.g. proton pump inhibitors, diuretics, cytotoxic drugs), clinical interventions (e.g. dialysis) known to alter magnesium levels. | Composition of dialysis solution, and monitoring of blood pressure, along with measurement of magnesium concentration, are useful to monitor treatments/interventions known to alter magnesium levels. This supports dose adjustment and avoids adverse effects. | Appropriate diagnostic/clinical sensitivity and specificity to measure and monitor magnesium concentrations to adjust drug dosing and adjust treatment. |
Example 2: IVD device intended to detect and measure C-reactive protein (CRP)

<table>
<thead>
<tr>
<th>Physiological state</th>
<th>Scientific Validity</th>
<th>Analytical Performance</th>
<th>Clinical Performance Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intended Purpose/Intended Use</td>
<td>To detect and measure C-reactive protein to assess the inflammatory status of the body.</td>
<td>CRP is one of the strongest acute phase reactants and aids in non-specific host defence against infectious agents, rising after myocardial infarction, stress, trauma, infection, inflammation, surgery or neoplastic proliferation.</td>
<td>Agreement with other assays standardised against reference preparation BCR470/CRM470 (method comparison) or erythrocytes sedimentation rate (ESR)</td>
</tr>
<tr>
<td>Analytical Performance</td>
<td>Quantitative determination of the CRP concentration in human serum, and plasma with appropriate analytical sensitivity, specificity, precision, etc.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Clinical condition</th>
<th>Clinical condition</th>
<th>Clinical condition</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific Validity</td>
<td>Determination of CRP is clinically useful to screen for organic disease, to assess activity of inflammatory diseases such as rheumatoid arthritis, to detect intercurrent infection in systemic lupus erythematosus, in leukaemia or after surgery.</td>
<td>Serum CRP is clinically useful to monitor disease activity and detect renal allograft rejection. This supports dose adjustment and avoids adverse effects.</td>
</tr>
<tr>
<td>Analytical Performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical Performance Options</td>
<td></td>
<td>Appropriate diagnostic/clinical sensitivity and specificity to monitor kidney function to adjust drug dosing.</td>
</tr>
</tbody>
</table>
Example 3: IVD device intended to measure Troponin T

<table>
<thead>
<tr>
<th>Intended Purpose/Intended Use</th>
<th>Scientific Validity</th>
<th>Analytical Performance</th>
<th>Clinical Performance Options</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physiological state</td>
<td>n/a</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical condition</td>
<td>To determine cardiac troponin T levels in human serum and plasma to detect clinical conditions and risk associated with cardiomyocyte damage.</td>
<td>Determination of troponin T in serum and plasma is useful in diagnosis of AMI/ACS due to the rapid increase of serum/plasma concentration after AMI. It is useful in risk stratification in patients presenting with ACS or cardiac risk in patients with renal disease. Determination of TnT aids in early diagnosis (PoC). Measurement of troponin T in serum and plasma aids in therapy selection in patients with elevated Troponin T levels.</td>
<td>Quantitative determination of the troponin T concentration in human serum, and plasma with appropriate analytical sensitivity, specificity, precision, etc.</td>
</tr>
<tr>
<td>Clinical condition ‘therapy monitoring’</td>
<td>To monitor troponin T levels in patients receiving drugs known to cause cardiac toxicity (such as anthracyclines, multikinase inhibitors, trastuzumab).</td>
<td>Currently, detection and monitoring of cardiac toxicity of cancer therapies are performed by assessment of LVEF using echocardiography, radionuclide ventriculography or MRI. Since a significant amount of myocardial damage is needed to result in a decrease of LVEF, the detection of cardiac toxicity can be delayed, leading to irreversible cardiac damage, late introduction of HF therapy, and suboptimal recovery. Early elevation of cardiac troponins after anthracycline is predictive of chronic cardiac toxicity, and the pattern of this elevation can add prognostic information.</td>
<td>Appropriate diagnostic/clinical sensitivity and specificity to monitor troponin T levels in order to adjust or induce appropriate treatment.</td>
</tr>
</tbody>
</table>
**Example 4: IVD device intended to measure glucose in serum, plasma and urine (no PST/CPS device)**

<table>
<thead>
<tr>
<th>Intended Purpose/Intended Use</th>
<th>Scientific Validity</th>
<th>Analytical Performance</th>
<th>Clinical Performance Options</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Physiological state</strong></td>
<td>To determine glucose levels in human serum, plasma and urine to assess glucose homeostasis.</td>
<td>Glucose is a breakdown product from carbohydrates and is used as an energy source in most organisms including humans. The concentration of glucose in the blood is regulated by the complex interplay of multiple pathways and is maintained within narrow limits.</td>
<td>Agreement with other assays standardised against ID/MS (method comparison).</td>
</tr>
<tr>
<td><strong>Clinical condition</strong></td>
<td>To determine glucose levels in human serum, plasma and urine to detect clinical conditions associated with abnormal glucose concentrations such as diabetes mellitus.</td>
<td>Determination of glucose in serum, plasma and urine is useful in screening and diagnosis of diabetes. It is an aid in diagnosis of other diseases resulting in altered glucose levels such as insulinoma. Measurement of glucose in urine aids in diagnosis of renal tubular disorders such as Fanconi syndrome or familial renal glucosuria.</td>
<td>Diagnostic/clinical sensitivity and specificity to detect specific clinical condition.</td>
</tr>
<tr>
<td><strong>Clinical condition</strong></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td><strong>therapy monitoring</strong></td>
<td>To monitor glucose levels in patients receiving blood glucose lowering drugs (such as insulin, and other anti-diabetic drugs).</td>
<td>Measurement of glucose provides an index of short-term glycaemic control. This supports dose adjustment and avoids adverse effects.</td>
<td>Appropriate diagnostic/clinical sensitivity and specificity to monitor glucose homeostasis to adjust drug dosing.</td>
</tr>
</tbody>
</table>
### Example 5: IVD device intended to detect oncology tumour marker – **KRAS mutation test**

<table>
<thead>
<tr>
<th>Pathologic state</th>
<th>Intended Purpose/ Intended Use</th>
<th>Scientific Validity</th>
<th>Analytical Performance</th>
<th>Clinical Performance Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>To detect gene mutation to assess KRAS mutation status in samples from patients diagnosed with metastatic colorectal cancer.</td>
<td>Somatic mutation in the KRAS gene is an essential step in the development of colorectal cancer.</td>
<td>Qualitative detection of somatic mutations in the KRAS gene using extracted DNA from FFPE samples of CRC with appropriate analytical sensitivity, specificity, precision etc.</td>
<td>Appropriate clinical performance data. For KRAS codons 12 and 13 WHO reference panel NIBSC 16/250 available.</td>
</tr>
</tbody>
</table>

Companion diagnostic

To detect gene mutation to assess KRAS mutation status in samples from patients diagnosed with metastatic colorectal cancer. The test is intended to be used as an aid in the identification of metastatic colorectal cancer patients for whom treatment with drug (INN) may be indicated.

Somatic mutations in the KRAS gene are predictive biomarkers of resistance to human EGFR directed therapies.

Clinical trial to establish the safety and effectiveness of the therapeutic product in the appropriate population based on detection of the KRAS mutation status using the IVD test.
Example 6: IVD device intended as an oncology monitoring assay – **BCR-ABL1**

<table>
<thead>
<tr>
<th>Pathologic state</th>
<th>Intended Purpose / Intended Use</th>
<th>Scientific Validity</th>
<th>Analytical Performance</th>
<th>Clinical Performance Options</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Pathologic state</strong></td>
<td>To measure BCR-ABL1 mRNA p210 transcript levels in patients diagnosed with positive chronic myelogenous leukaemia during monitoring of treatment with Tyrosine Kinase Inhibitors.</td>
<td>The BCR-ABL1 transcript produced by the t (9;22) chromosomal translocation is associated with chronic myelogenous leukaemia. Therapy response in CML is associated with BCR-ABL1/ABL1 transcript levels.</td>
<td>Quantitative detection of BCR-ABL1 transcript using extracted RNA from whole blood with appropriate analytical dataset (sensitivity, specificity, precision etc.)</td>
<td>Appropriate clinical performance data. WHO International standard material for quantitation of BCR-ABL translocation available.</td>
</tr>
</tbody>
</table>

| CDx | To measure BCR-ABL1 mRNA p210 transcript levels in patients diagnosed with t (9;22) positive chronic myelogenous leukaemia during monitoring of treatment with Tyrosine Kinase Inhibitors and to be used in the monitoring as an aid in identifying CML patients in the chronic phase being treated with drug (INN) who may be candidates for treatment discontinuation | The BCR-ABL1 transcript produced by the t (9;22) chromosomal translocation is associated with chronic myelogenous leukaemia. Therapy response in CML is associated with BCR-ABL1/ABL1 transcript levels and treatment success is defined by specific transcript levels. | | Clinical trial to establish the safety and effectiveness of the therapeutic product (incl. discontinuation of drug) in the appropriate population based on monitoring BCR-ABL1 transcript levels using the IVD test. |
and for monitoring of treatment-free remission.
References:


2. Regulation 2017/ 746/ EU of the European parliament and of the council of April 5, 2017 on in vitro diagnostic medical devices

3. GHTF/SG1/N045:2008 Principles of In Vitro Diagnostic (IVD) Medical Device Classification

4. IMDRF Essential principles v 2017 GHTF/SG1/N77:2012 Principles of Medical Device Classification

CHAPTER 2 – Analytical and clinical performance indicators

Analytical and Clinical Performance as Components of Clinical Evidence

IVDR Article 56 states:

‘(2) - The *clinical evidence* shall support the intended purpose of the device as stated by the manufacturer and be based on a continuous process of performance evaluation, following a performance evaluation plan.

(3) - A performance evaluation shall follow a defined and methodologically sound procedure for the demonstration of the following, in accordance with this Article and with Part A of Annex XIII:

   (a) scientific validity;
   (b) analytical performance;
   (c) clinical performance.

The data and conclusions drawn from the assessment of those elements shall constitute the *clinical evidence* for the device. The *clinical evidence* shall be such as to scientifically demonstrate, by reference to the state of the art in medicine, that the intended clinical benefit(s) will be achieved and that the device is safe. The *clinical evidence* derived from the performance evaluation shall provide scientifically valid assurance, that the relevant general safety and performance requirements set out in Annex I, are fulfilled, under normal conditions of use.’

**Figure 2.1 Components of clinical evidence according to IVDR 2017/746**

IVD devices shall achieve the performances stated by the manufacturer, and in particular, where applicable:

(a) The analytical performance, such as, analytical sensitivity, analytical specificity, trueness (bias), precision (repeatability and reproducibility), accuracy (resulting from trueness and precision), limits of detection and quantitation, measurement range, linearity, cut-off, including determination of
appropriate criteria for specimen collection and handling and control of known relevant endogenous and exogenous interference, cross-reactions.

(b) The clinical performance, such as diagnostic sensitivity, diagnostic specificity, positive predictive value, negative predictive value, likelihood ratio, expected values in normal and affected populations. 
*Annex I, Chapter II, Section 9.1 and Annex II, Section 6.1.*

1) **What is the conceptual difference between analytical and clinical performance?**

- Analytical performance and clinical performance studies have different objectives and endpoints.
- Analytical performance studies focus on the analyte, clinical performance studies focus on the patient.
- Analytical performance is the basis of the clinical performance of a device.
- Analytical performance data do not directly demonstrate the clinical performance of a device as they are assessing different performance characteristics. For example, a high analytical sensitivity does not guarantee acceptable diagnostic sensitivity.

2) **What are the typical indicators of analytical and clinical performance?**

Indicators of analytical performance are typically similar or even identical across IVD devices. Guidance is provided by a set of Clinical & Laboratory Standards Institute (CLSI) documents. Conversely, indicators of clinical performance vary and depend strongly on the Intended Purpose. Specifically, the clinical function in the intended purpose/use defines the study endpoint or clinical performance data type, e.g. diagnostic sensitivity and specificity (also described as clinical sensitivity and specificity) for a test claiming a diagnostic intended purpose and a hazard ratio for a test claiming prognostic intended purpose (see Table 2.1 below).

The term “clinical study” by itself, without the specification of analytical or clinical performance study, can be confusing. Specifically, the term “clinical study” is sometimes applied to any study collecting or using of patients’ samples (sometimes called “clinical samples”), independent of the performance indicators. However, an analytical performance study utilising patient samples remains an analytical performance study and is not considered as a source of clinical performance data. The recommendation is, therefore, to use the specific and clearly defined terms such as “analytical performance study” and “clinical performance study”, as opposed to “clinical study”.

Table 2.1 Possible examples of analytical and clinical performance indicators based on the intended purpose as referred to in the complementary list of examples. For abbreviations, please see below.

**Typical Performance Indicators**

<table>
<thead>
<tr>
<th>Analytical Performance</th>
<th>Clinical Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Measuring integral LoQ as the lower limit and the upper limit of linearity as the upper limit.</td>
<td><strong>Intended Purpose</strong></td>
</tr>
<tr>
<td>LoB (e.g. CLSI guideline EP17-A2)</td>
<td>Screening</td>
</tr>
<tr>
<td>LoD (analytical sensitivity) (e.g. CLSI guideline EP17-A2)</td>
<td>Diagnosis</td>
</tr>
<tr>
<td>LoQ (e.g. CLSI guideline EP17-A2)</td>
<td>Classification</td>
</tr>
<tr>
<td>Linearity (e.g. CLSI guideline EP06-A6)</td>
<td>Progress</td>
</tr>
<tr>
<td>Precision ( repeatability) (e.g. CLSI guideline EP05-A3)</td>
<td>Disease Monitoring</td>
</tr>
<tr>
<td>Intermediate Precision (e.g. CLSI guideline EP05-A3)</td>
<td>Therapy stratification</td>
</tr>
<tr>
<td>Reproducibility (e.g. CLSI guideline EP05-A3)</td>
<td>Therapy selection</td>
</tr>
<tr>
<td>Carryover (e.g. CLSI guideline H06-A2)</td>
<td>(Patho) physiological function or state</td>
</tr>
<tr>
<td>Total Analytical Error (Accuracy) (e.g. CLSI guideline EP21-A1)</td>
<td>For all Intended Purposes</td>
</tr>
<tr>
<td>Instrument Comparison (e.g. CLSI guideline EP09-A3)</td>
<td></td>
</tr>
<tr>
<td>Method Comparison (e.g. CLSI guideline EP09-A3)</td>
<td></td>
</tr>
<tr>
<td>Interfering Substances (analytical specificity); Could be done by checking known and expected interferences, e.g. from positive cases and literature research</td>
<td></td>
</tr>
</tbody>
</table>

**Box 1: Abbreviations**

- AUC: Area under the curve
- LoB: Limit of blank
- LoD: Limit of detection
- LoQ: Limit of quantification
- NPV: Negative predictive value
- NRI: Net reclassification index
- PPV: Positive predictive value

*Please note that this table does not provide a comprehensive or prescriptive selection of performance indicators. It is the manufacturer’s sole responsibility to define an appropriate concept of clinical evidence*
Table 2.2 Examples of different intended purposes/use and how they drive the selection of clinical performance indicators, possible study populations, potential study designs, and IVD device examples

<table>
<thead>
<tr>
<th>Intended Purpose</th>
<th>Performance indicator</th>
<th>Study population</th>
<th>Study design</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening (early detection of subclinical disease)</td>
<td>Diagnostic sensitivity &amp; specificity (against the “gold standard” reference method), AUC, NPV, PPV</td>
<td>Subjects at risk (indicated for screening) Could be population level</td>
<td>Prospective or retrospective observations, longitudinal study (1-arm) or corresponding RWD</td>
<td>Bloodscreening for Infectious Diseases</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Diagnostic sensitivity &amp; specificity (against the “gold standard” reference method), AUC, NPV, PPV</td>
<td>Subjects with signs and symptoms of disease</td>
<td>Prospective or retrospective observational cohort study or cross-sectional case-control study</td>
<td>Troponins for AMI</td>
</tr>
<tr>
<td>Classification / Grading</td>
<td>Agreement tables, NRI (Net Reclassification Index), if a gold standard available: also Sens/Spec</td>
<td>Subjects diagnosed with the disease of interest</td>
<td>Prospective or retrospective observational study, “case-control” study (cases with different grading)</td>
<td>Creatinine for kidney function / failure</td>
</tr>
<tr>
<td>Prognosis /Risk Stratification</td>
<td>Hazard ratio, Odds ratio, Kaplan-Meier curves, C-index, NRI, absolute survival estimates</td>
<td>Depending on IU, population level, or subjects with disease</td>
<td>Prospective or retrospective observational study (less preferred: case-control study)</td>
<td>CRR, LDL</td>
</tr>
<tr>
<td>Disease monitoring</td>
<td>Diagnostic sensitivity &amp; specificity, AUC (against gold standard), NPV, PPV</td>
<td>Diseased patients with or without treatment</td>
<td>Prospective or retrospective observational longitudinal study</td>
<td>Glucose, PSA</td>
</tr>
<tr>
<td>Therapy stratification (CDx)</td>
<td>Patient outcome measure and interaction analysis (CDx defined group for therapeutic efficacy and/or safety)</td>
<td>All-comers (all patients under treatment of the drug)</td>
<td>Clinical outcome studyprospective randomized controlled trial (RCT) or retrospective study</td>
<td>HER2, BRAF, KRAS</td>
</tr>
<tr>
<td>Therapy selection (CDx)</td>
<td>Patient outcome measure and interaction analysis (CDx defined group for therapeutic efficacy and/or safety)</td>
<td>Biomarker-positive patients</td>
<td>Clinical outcome studyprospective RCT or retrospective study Concurrence (bridging) studies</td>
<td>BRAF</td>
</tr>
</tbody>
</table>

Diagnostic sensitivity = Clinical sensitivity

Please note that this table does not provide a comprehensive or prescriptive selection of performance indicators, study populations, or study designs. It shows possible options of these clinical evidence concepts. It is the manufacturer’s sole responsibility to define an appropriate clinical evidence concept. Furthermore, the demonstration of clinical utility is not a requirement according to the IVDR. A notable exception is the Intended Use of Therapy Prediction (Companion Diagnostic) where a clinical utility study involving the corresponding drug is typically required.

It should be noted that there are various analytical performance guidance and specifications approaches, e.g., standards from the Clinical and Laboratory Standards Institute (CLSI), the Milan performance specifications, and others. These are established guidelines that could be considered, but it is beyond the scope of this brochure to provide a comprehensive overview.

3) Where should cut-offs be documented?

- IVDR mentions cut-offs under analytical performance. Therefore, cut-offs should be documented in the analytical performance report, unless justified.
- IVDR, Annex II, Section 6.1.2.6. Definition of assay cut-off:
  This Section shall provide a summary of analytical data with a description of the study design including methods for determining the assay cut-off, such as:
  (a) the population(s) studied: demographics, selection, inclusion and exclusion criteria, number of individuals included;
  (b) method or mode of characterisation of specimens; and
  (c) statistical methods such as Receiver Operator Characteristic (ROC) to generate results and if applicable, define grey zone/equivocal zone.
4) What are the requirements if analytical and/or clinical performance studies are performed externally instead of internally?

- External studies have the same objectives and endpoints as their internal counterparts.
- The level of required documentation is higher for performance evaluation studies, if conducted externally.
- For external studies, manufacturers need to consider a number of additional factors and activities, e.g. number of study sites, site initiation, monitoring, sponsorship, contract an investigator. Depending on the type of study, ethics approval may be needed. For clinical performance studies, see also ISO 20916 ‘In vitro diagnostic medical devices — Clinical performance studies using specimens from human subjects – Good study practices’
- If testing in an end-user setting (external study) is omitted by the manufacturer, it has to be justified that the internal conditions of use cover the normal conditions of use mentioned in Annex I.

- IVDR Annex I, Section 9.4. ‘The characteristics and performances of the device shall be specifically checked in the event that they may be affected when the device is used for the intended use under normal conditions:
  (a) For devices for self-testing, performances obtained by laypersons;
  (b) For devices for near-patient testing, performances obtained in relevant environments (for example, patient home, emergency units, ambulances).’

- IVDR Annex XIII, 2.3.1. ‘Clinical performance study design type: Clinical performance studies shall be designed in such a way as to maximize the relevance of the data while minimising potential bias.’
- IVDR Article 57. 2. ‘Where appropriate, performance studies shall be performed in circumstances similar to the normal conditions of use of the device.’
References:

1. Regulation EU 2017/746 of the European parliament and of the council of April 5, 2017 on *in vitro* diagnostic medical devices


3. Table 1.3 Examples of intended purposes/uses.


   a. The CLSI numbers and version is valid at the time of publication/revision of this document.

CHAPTER 3 – State of the Art (in medicine)

1) Did the concept of state-of-the-art change from the Directive to the Regulation?

The concept of state of the art has been a core element of the essential requirements of IVD Directive 98/79/EC (IVDD)\(^1\) and remains such of the general safety and performance requirements of IVD European Regulation 2017/746 (IVDR)\(^2\).

The IVDR (Annex I, Section 9) stipulates that “Devices shall be designed and manufactured in such a way that they are suitable for the purposes [..], as specified by the manufacturer, and suitable with regard to the performance they are intended to achieve, taking into account of the generally acknowledged state of the art”.

Hence, manufacturers must adopt solutions to design a safe and effective device, where benefits to the patients outweigh any residual risks associated with the use of this device. These solutions shall take into account the generally acknowledged state of the art.

Further to the requirements of the IVDD, the IVDR puts a lot of emphasis on the clinical relevance of the diagnostic device. Thus, in addition to the generally acknowledged state of the art of devices, the performance of a device, particularly the clinical evidence and the clinical benefit, shall take into account state of the art in medicine.

As per Article 56 of the IVDR : “The clinical evidence shall be such as to scientifically demonstrate, by reference to state of the art in medicine, that the intended clinical benefit(s) will be achieved, and that the device is safe.”

2) What is ‘state of the art’?

There is no definition in the IVD Regulation itself, nor is there Commission guidance that addresses this topic.

IMDRF/GRRP WG/N47 provides the following definition which is identical to the definition of EN ISO 14971:2019- “Medical Devices-Application of risk management to medical devices”\(^3\)

State of the art is defined as “developed stage of technical capability at a given time as regards products, processes and services, based on the relevant consolidated findings of science, technology and experience”.

In the note under the definition, the standard further clarifies the term as: “state of the art embodies what is currently and generally accepted as good practice in technology and medicine. State of the art does not necessarily imply the most technologically advanced solution”.

\(^1\) www.medtecheurope.org

\(^2\) www.medtecheurope.org

\(^3\) www.medtecheurope.org
This standard also gives a number of methods that can be leveraged to determine 'state of the art' for a device, which may include:

- Standards used for the same or similar devices;
- Best practices as used in other devices of the same or similar type;
- Results of accepted scientific research;
- Publications from authorities, or additional information for similar other products;
- Comparison of the benefits and risks of the device under development with the benefits and risks of similar devices available on the market.

Based on the foregoing, the concept ‘state of the art’ is usually used to describe all knowledge accumulated to-date and practice in general terms (including but not limited to clinical practice, conceptual thinking in the scientific/clinical field, consensus guidelines, the latest versions of the inter/national standards and regulations, etc.) on a subject and products to minimise user and patient risk in balance to its benefits. It shall be noted that the concept of generally acknowledge state of the art implies general acceptance of such, rather than individual or local interpretation.

A device satisfies the ‘state of the art’ criteria when it has been designed and manufactured to reflect and incorporate that knowledge and practice. The determination of what is the current state of knowledge may always be a matter on which there are different views. Still, it is based on the robust evidence at that point in time (as opposed for example to hypotheses, speculation, etc.).

Since standards and ‘Common (Technical) Specifications’ are the result of the collaborative work of experts in the field, they are likely at least when they are adopted, to reflect the ‘state of the art’ on that particular subject.

3) What is ‘state of the art in medicine’?

Similar to ‘state of the art’ there is no Commission guidance or definition in the IVD Regulation of ‘state of the art in medicine’ itself. In the absence of any official reference, ‘state of the art in medicine’ can be defined as currently accepted practice/s based on current clinical guidelines.

IVDR article 56(3) describes ‘state of the art in medicine’ in relation to the performance evaluation concept for the demonstration of scientific validity, analytical performance and clinical performance. The data and conclusions, as output from the assessment of those elements, constitutes the clinical evidence. By reference to the ‘state of the art in medicine’, the clinical evidence demonstrates scientifically that the intended clinical benefit will be achieved.

This often referred to as the standard of care that is defined as “a diagnostic and treatment process that a clinician should follow for a certain type of patient, illness, or clinical circumstances”5.
Similarly, the’ state of the art in medicine’ derives from current knowledge and clinical practice taking account of the available diagnostic and therapeutic options.

References to ‘state of the art in medicine’ at any point in time can be found, e.g. in:

- Medical texts books;
- Clinical guidelines;
- Peer-reviewed literature;
- Recommendations from medical and/or laboratory associations

4) Changes to the state of the art – what should be considered?
In light of ongoing technological advancement and adoption of innovative medical solutions, the evolution of state of the art is inevitable. In such cases, manufacturers should evaluate the intended purpose, the acceptability of the benefit-risk ratio and the clinical benefit assessments, to verify if the device can continue to be regarded as state of the art. This is particularly relevant for the first IVDR assessment of a device placed on the market under the IVD Directive a long time ago. Furthermore, TR 24971 advises the manufacturers to consider the availability or non-availability of adequate diagnostic alternatives for the clinical condition in the intended population as well as the associated risks and benefits.

Individual IVD devices have occasionally been questioned about still being state of the art in medicine, although they are still part of the clinical routine in Europe and elsewhere. Examples of such devices are shown in the table below along with the rationale as to why they are still state of the art and in clinical practice, sometimes in different and/or additional intended purposes / uses (for which clinical evidence is required).
Table 3.1 Examples of devices that represent state of the art in medicine

<table>
<thead>
<tr>
<th>Examples</th>
<th>Rationale</th>
</tr>
</thead>
<tbody>
<tr>
<td>Creatine Kinase (CK-MB)</td>
<td>Troponins (T or I isoform) have replaced CK-MB for the diagnosis of acute myocardial infarction (AMI). This could lead to the view that CK-MB is no longer state of the art in medicine. However, CK-MB is clinically still useful and routinely used (1) in hospitals that have no access to troponins and (2) in hospitals applying troponins to assess re-infarction, i.e., a 2nd AMI episode that is challenging to diagnose due to the longer half-life of troponins.</td>
</tr>
<tr>
<td>Conventional troponin (non-high sensitivity)</td>
<td>High sensitivity troponin assays have become the gold standard for the diagnosis of acute myocardial infarction (AMI). In conjunction with other medical information, they allow for early rule in / out of AMI. This could lead to the view that conventional troponins devices are no longer state of the art in medicine. However, conventional troponin is clinically still useful and routinely used in settings where high-sensitivity troponins are not available, e.g. Point of Care settings, and particularly for ruling in AMI.</td>
</tr>
<tr>
<td>Antimicrobial Sensibility Testing (AST)</td>
<td>Agar dilution or broth microdilution (BMD) are well established methods for the purpose of determination of the minimum inhibitory concentration; the breakpoints change regularly according to the guidelines of CLSI and EUCAST in order to answer to epidemiological environment and patient care practices. Despite the change of breakpoints, when products’ performances remain correlated with the reference method (BMD), the device continues to be state of the art.</td>
</tr>
</tbody>
</table>
References


2. Regulation 2017/746/ EU of the European parliament and of the council of April 5, 2017 on in vitro diagnostic medical devices

3. EN ISO 14971:2019 Medical devices – Application of risk management to medical devices


5. IMDRF/GRRP WG/N47 FINAL:2018 – Essential Principles of Safety and Performance of Medical Devices and IVD Medical Devices

CHAPTER 4 – Scientific Validity, Clinical Benefit and Clinical Utility

Background

Scientific validity is a new term and requirement that has been introduced in the IVD Regulation. It is important to clarify the concept of scientific validity, and its relationship to clinical utility, in order to understand what the responsibilities of the manufacturer are under the Regulation.

1) What is the concept of ‘scientific validity’ and the relationship between ‘scientific validity’ and ‘clinical utility’?

● The IVDR Article 2 (38) defines scientific validity of an analyte as the association of an analyte with a clinical condition or a physiological state.
● The IVDR does not mention or define clinical utility.
● The IMDRF document GHTF/SG5/N6:2012 explains that scientific validity is often identified in academic research and is supported by studies evaluating the analyte (measurand) for potential clinical applications. Literature review and, where applicable, feasibility and/or scientific validity studies, will help to establish the potential scientific validity. For many analytes (measurands) the scientific validity is well established; e.g. the scientific validity for calcium (measurand) is well established as being linked to parathyroid disease, a variety of bone diseases, chronic renal disease and tetany. However, some IVD medical devices are developed when the scientific validity of the analyte is still emerging. An example would be a newly characterised biomarker that is potentially useful in monitoring recurrence or progressive disease in patients with cancer.
● In the same IMDRF document, a definition of clinical utility is given as: ‘The usefulness of the results obtained from testing with the IVD medical device and the value of the information to the individual being tested and/or the broader population.’
● The IMDRF provides a link between clinical utility and scientific validity by the following explanation:

Clinical utility of an IVD medical device supports clinical decisions for patient management such as effective treatment or preventive strategies. Clinical utility has been described as including many elements such as acceptability, appropriateness, availability of treatments/interventions, and health economics. Scientific validity and clinical performance are the only elements of clinical utility considered in this document (see APPENDIX I).

In line with the IVDR, a manufacturer is expected to demonstrate clinical evidence, which includes scientific validity, analytical performance and clinical performance, for all IVD medical devices unless any omission can be justified as not applicable. Aside from scientific validity and clinical performance, a manufacturer is not required to demonstrate any other elements of clinical utility for premarket conformity CE marking assessment purposes.

2) What are the examples of scientific validity and clinical utility?

Scientific validity
A self-testing blood glucose product which measures the amount of glucose in the blood has a **scientific validity** in that glucose levels are associated with diabetes.

**Clinical utility**
The **clinical utility** of testing the blood for glucose is that if the patient monitors their glucose levels regularly to ensure it remains within the normal range and, as needed, adjusts their insulin levels to keep their blood glucose levels normal, this will have longer-term effects on patient outcomes. It can reduce the potential for damage to the large blood vessels of the heart, brain and legs (called macrovascular complications) and damage to the small blood vessels (microvascular complications) causing problems in the eyes, kidneys, feet and nerves. These complications will cause hospitalisation and further cost to the health service.

3) **What are the responsibilities of the manufacturer under the IVD Regulations to provide information on scientific validity to enable a product to be CE marked?**

   a. The manufacturer is responsible for demonstrating **scientific validity** as defined in Annex XIII Part A (1.2. (1)) ‘Performance evaluation and Performance Studies’.
      i. As a general methodological principle, the manufacturer shall:
         I. identify through a systematic scientific literature review the available data relevant to the device and its intended purpose and identify any remaining unaddressed issues or gaps in the data;
         II. appraise all relevant data by evaluating their suitability for establishing the safety and performance of the device;
         III. generate any new or additional data necessary to address outstanding issues.
      ii. The manufacturer shall demonstrate scientific validity based on one or a combination of the following sources:
         I. relevant information on the scientific validity of devices measuring the same analyte or marker;
         II. scientific (peer-reviewed) literature;
         III. consensus expert opinions/positions from relevant professional associations;
         IV. results from proof-of-concept studies;
         V. results from clinical performance studies.

   As stated in Article 56 (5) – ‘The scientific validity data, their assessment and the clinical evidence derived therefrom shall be documented in the performance evaluation report referred to in Section 1.3.2 of Part A of Annex XIII. The performance evaluation report shall be part of the technical documentation, referred to in Annex II, relating to the device concerned.’

4) **What is meant by clinical benefit for an IVD device?**

   - The **IVDR Article 2 (37) defines clinical benefit** as ‘the positive impact of a device related to its function, such as that of screening, monitoring, diagnosis of patients, or a positive impact on patient management or public health’.

   - In addition, **Recital 64** states: ‘It should be recognised that the concept of **clinical benefit** for in vitro diagnostic medical devices is fundamentally different from that which applies in the case of pharmaceuticals or of therapeutic medical devices, since the benefit of in vitro diagnostic medical
device lies in providing accurate medical information on patients, where appropriate, assessed against medical information obtained through the use of other diagnostic options and technologies, whereas the final clinical outcome for the patients is dependent on further diagnostic and/or therapeutic options which could be available.'

- Thus, the clinical benefit focuses on the ‘accurate medical information’ output of an IVD device, in context of the intended purpose as defined by the manufacturer and in conjunction with other medical information. The clinical benefit and the corresponding clinical evidence do not include the potential benefits as a result of patient management (see figure 4.1).

5) How do manufacturers assess the clinical benefit of their device?

- Annex XIII (1.3.1) of the IVDR states: ‘The manufacturer shall assess all relevant scientific validity, analytical and clinical performance data to verify the conformity of its device with the general safety and performance requirements as referred to in Annex I. The amount and quality of that data shall allow the manufacturer to make a qualified assessment whether the device will achieve the intended clinical benefit or benefits and safety, when used as intended by the manufacturer.’

- Hence, mindful of the Regulation and its definitions above, manufacturers first describe the intended clinical benefit (based on the intended purpose) and then perform a qualified assessment of the acceptability of benefit-risk of a device and the corresponding clinical evidence as to whether the clinical benefit is achieved. It should be noted that this can be a qualitative assessment based on the judgement of a qualified person taking into consideration other diagnostic information on a patient as provided by the state of the art in medicine. As outlined in the chapter on Plans and Reports for Performance Evaluation, the intended clinical benefit needs to be described in the Performance Evaluation Plan. The assessment of benefit-risk and clinical evidence towards the achievement of the clinical benefit must be documented in the performance evaluation report.

Examples of Clinical Benefit Assessments (according to the IVDR Article 2 (37) and Recital 64)

The following clinical benefit assessment examples describe the medical information on patients (e.g. screening, monitoring, diagnosis). Although clinical utility is beyond the IVDR requirements, the following examples should aim at illustrating the differences between the concepts of clinical benefit and clinical utility (see also IVDR Annex II).

Clinical Benefit Assessment of a Cyclosporine IVD Device
Based on its analytical performance and scientific validity, this IVD device achieves the clinical benefit of accurately measuring concentrations of cyclosporine in blood. Based on clinical guidelines and textbooks, and when used in conjunction with other diagnostic technologies and options, this medical information is useful in the context of the narrow therapeutic range of cyclosporine, whereby underdosing is associated with an increased risk for transplant rejection, and overdosing is associated with toxicity and an increased risk for nephropathy. This clinical benefit supports physicians in establishing and maintaining efficacious therapeutic drug concentrations and ultimately (the clinical utility of) graft tolerance, while minimising potentially toxic effects of overdosing.

Clinical Benefit Assessment of a Magnesium IVD Device
Based on the clinical evidence, this IVD device achieves the clinical benefit of accurately measuring magnesium in plasma or serum. Based on clinical guidelines and textbooks, and when used in conjunction with other diagnostic technologies and options, this medical information is useful for diagnosing and monitoring
magnesium imbalance, including hypomagnesemia (magnesium deficiency) and hypermagnesemia (magnesium excess), both of which can be associated with (or observed during) a number of underlying disease states or pathological conditions. This clinical benefit allows physicians to consider (the clinical utility of) timely clinical interventions or exclusion of magnesium dysregulation.

Clinical Benefit Assessment of a Troponin T/I IVD Device
Based on the analytical and clinical performance (high NPV and PPV), this IVD device achieves the clinical benefit of accurately measuring Troponin T/I in plasma or serum and providing medical information about myocyte (heart cell) injury that can, in conjunction with other diagnostic technologies and options (e.g. chest pain and electrocardiogram) and per clinical guidelines, be used as an aid in the diagnosis of myocardial infarction in patients presenting with chest pain. This clinical benefit allows physicians to consider (the clinical utility of) timely therapeutic interventions or exclusion of myocardial infarction.

Clinical Benefit Assessment of a CD45 2D1 IVD Device
Based on the analytical performance, this IVD device achieves the clinical benefit of accurate identification of haematopoietic cells expressing the CD45 antigen. Based on clinical guidelines for the immunophenotyping of haematopoietic cells, and when used in conjunction with further diagnostic tests or procedures, this medical information is useful for the assessment of immune status. This clinical benefit allows physicians to consider timely diagnostic or therapeutic options for disorders of the immune system.

Clinical Benefit Assessment of a TBNK (T cells, B cells, Natural Killer cells) IVD Device
Based on the analytical and clinical performance, this IVD device achieves the clinical benefit of accurate identification and measurement of T, B and Natural Killer (NK) lymphocyte subsets, including percentages and absolute counts. Based on clinical guidelines for the identification and enumeration of lymphocyte subsets, and when used in conjunction with further diagnostic tests or procedures, this medical information is useful for the assessment of individuals that have (or are at risk of having) autoimmune diseases or immune deficiencies. This clinical benefit allows physicians to consider timely diagnostic or therapeutic options for autoimmune diseases or immune deficiencies.
Figure 4.1 Clinical benefit concept under the IVDR and its distinction from clinical utility
References:


2. ISO 14971:2019 - Medical devices — Application of risk management to medical devices
CHAPTER 5 – Benefit-Risk Requirements & Potential Approaches under the IVDR

Scope

This Q&A document is intended to assist in understanding the requirements of the IVD Regulation\(^1\) with respect to capturing ‘benefit’ when carrying out benefit risk assessments. Approaches to capture the benefit-risk assessment are also considered. The IVD Regulation takes precedence with respect to benefit-risk. In this Q&A attention is also drawn to other recognised guidance documents with particular reference to ISO/FDIS14971:2019\(^2\), the risk management standard for medical devices.

Key definitions from the IVDR

**Benefit-Risk** (IVDR: Article 2 (17))\(^1\) - ‘benefit-risk determination’ means the analysis of all assessments of benefit and risk of possible relevance for the use of the device for the intended purpose, when used in accordance with the intended purpose given by the manufacturer.

**Clinical Benefit** (IVDR; article 2(37))\(^1\) - ‘clinical benefit’ means the positive impact of a device related to its function, such as that of screening, monitoring, diagnosis or aid to diagnosis of patients, or a positive impact on patient management or public health.

- IVDR, Recital 64\(^1\) - It should be recognised that the concept of clinical benefit for *in vitro* diagnostic medical devices is fundamentally different from that which applies in the case of pharmaceuticals or of therapeutic medical devices, since the benefit of *in vitro* diagnostic medical devices lies in providing accurate medical information on patients, where appropriate, assessed against medical information obtained through the use of other diagnostic options and technologies, whereas the final clinical outcome for the patient is dependent on further diagnostic and/or therapeutic options which could be available.

**Clinical evidence’** (IVDR: Article 2 (36))\(^1\) means clinical data and performance evaluation results, pertaining to a device of a sufficient amount and quality to allow a qualified assessment of whether the device is safe and achieves the intended clinical benefit(s), when used as intended by the manufacturer.

Additional definitions from ISO/FDIS 14971:20192

**Benefit** – positive impact or desirable outcome of the use of a medical device on the health of an individual, or a positive impact on patient management or public health.

Note: Benefits can include positive impact on clinical outcome, the patient’s quality of life, outcomes related to diagnosis, positive impact from diagnostic devices on clinical outcomes, or public health impact.
Risk – combination of the probability of occurrence of harm and the severity of that harm

1) What are the general requirements for addressing Benefit-Risk?

Benefit-risk assessment is a qualified assessment of the corresponding clinical evidence and acceptability of the benefit-risk ratio of the intended purpose as to whether the clinical benefit is achieved. For IVDs, the primary benefit is the extent of accurate medical information on patients (IVDR; recital 64)\(^1\), any other benefit to the patient should also be considered in benefit-risk assessments (IVDR; Annex I (1))\(^1\). The positive impact to the patient, alongside benefits to patient management and public health is therefore the overall benefit (IVDR; Article 2, Definitions (37))\(^1\) to be compared to a product’s known and foreseeable risks when used during normal conditions of use (IVDR; Annex I (8))\(^1\). Undesirable effects shall be minimised and be acceptable when weighed against the evaluated potential benefits to the patients and/or the user arising from the intended performance of the device during normal conditions of use (IVDR; Annex 1 (8))\(^1\).

Rather than requiring each individual benefit and risk to be compared against one another, the Regulation defines the benefit-risk determination to be the overall benefit-risk determination (IVDR; Article 2, Definitions (17))\(^1\). Where an individual critical risk may not meet the initial acceptance criteria, this residual risk must be justified and be addressed accordingly. This is in line with ISO 14971:2019, section A 2.8\(^3\), which states that the overall residual risks should be compared against the benefits of the device to evaluate whether a high-risk but highly beneficial medical device should be marketed.

Practicability\(^1\) is also taken into consideration, the IVDR states: ‘risks are to be reduced as far as possible without adversely affecting the benefit-risk ratio’ (Annex I (2))\(^1\). It is reasonable to interpret that the economic practicability in such decisions includes reference to the benefits for public health and for society as a whole. However, importantly, section C4 of ISO/DTR 24971\(^4\) goes on to state that the ‘economic practicability should not be used as a rationale for the acceptance of unnecessary risk’.

The IVDR is clear in stating that the benefit-risk assessment should be carried out under normal conditions of the intended use of the device (IVDR; Article 56 (1))\(^1\) and (IVDR; article 57 (2))\(^1\). It is therefore important to identify the hazards from normal use\(^2\), see table below.

\(^1\) Practicability has two considerations: technical practicability and economic practicability (ISO/DTR24971 Medical devices -- Guidance on the application of ISO 14971, section C3)\(^4\). Technical practicability refers to the ability to reduce the risk regardless of cost. Whereas the economic practicability refers to the ability to reduce the risk without making the medical device an unsound economic proposition, because the risk control measure(s) would make the medical device too expensive for widespread use.

\(^2\) ‘normal use’ is not defined in the Regulation. In ISO 14971, section 6.2\(^3\), it is understood as being used for the intended use. A further definition is found in IEC 62366-1, section 3.9\(^5\). Here, normal conditions is understood to mean according to the intended use and instructions for use.
Table 5.1 Hazard identification examples in normal use and from use errors (modified from ISO/TR 24971)⁴

<table>
<thead>
<tr>
<th>ISO/TDR 24971 Section H ⁴</th>
<th>Hazard Identification</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.3.3</td>
<td>From normal use</td>
<td>Inherent false positive/negative rates, measurement uncertainty, within/outside normal range when using 95% normal range, known interference, biological variation, matrix effects, instrument reliability</td>
</tr>
<tr>
<td>2.3.4</td>
<td>From use errors</td>
<td>Performing operations out of sequence due to unclear instructions, data entry errors, applying insufficient volume manually or through automation.</td>
</tr>
</tbody>
</table>

When planning clinical studies, it may be beneficial to define the conditions of normal use within the clinical study documentation and include the justification as to how the study itself represents this use. Where the study does not reflect the ‘normal use situation’ then further justification or evidence may be useful.

Documentation of benefit-risk ratio is required under the IVDR⁴ as part of the general safety and performance requirements (Annex I (1); Annex I (8))⁴, as part of the general risk management system (Annex I (3e))⁴, and as part of the technical documentation (Annex II (5a))⁴.

2) Are there any specific requirements for companion diagnostics (CDx)?

Within the IVDR⁴, ‘companion diagnostic’ means a device which is essential for the safe and effective use of a corresponding medicinal product.

To meet the general requirement for performance evaluation and clinical evidence (article 56 & 57)⁴, CDx performance evaluation studies may require studying the IVD device in relation to and/or together with the corresponding drug or therapy to determine the efficacy and safety of the drug or therapy. As such, the intended purpose/use, medical treatment and outcome of the patient need to be taken into consideration for studies involving CDx. Additionally, Article 58¹ & Annex XIV¹ may be applicable to clinical performance studies aimed at demonstrating clinical benefit of a CDx.
3) What are the requirements for addressing benefit-risk prior to product launch (performance evaluation)?

The IVDR (Article 56 & 57) requires “…confirmation of conformity with relevant general safety and performance requirements as set out in Annex I. Annex 1 (8) requires ‘all known and foreseeable risks, and any undesirable effects to be minimized and be acceptable when weighed against the evaluated potential benefits’ and ‘the intended performance of the device during normal conditions of use’. For this to be achieved, sufficient clinical evidence is required within the performance evaluation and shall provide scientifically valid assurance, that the relevant general safety and performance requirements set out in Annex I, are fulfilled, under normal conditions of use.

As per the IVDR, Annex XIII (1.1), the performance evaluation plan shall include acceptability parameters of the benefit-risk ratio for the intended purpose and performance of the device, see figure 5.1. Also, the method of this assessment should be included. A possible approach could be to use a risk acceptability table. The purpose of such a table would be to document the probability of harm vs. the severity of harm for each risk, the acceptability of which is driven by the benefits of the device.

A description of the expected benefits and risk is to be documented as part of the clinical performance study plan (Annex XIII (2.3.2h)), and sufficient data demonstrating that the device achieves the intended clinical benefit(s) and is safe is to be documented as part of the clinical evidence and performance evaluation report (Annex XIII (1.3.1)). With respect to figure 5.1 Flow chart of benefit-risk requirements (see below), outputs of the performance evaluation would be considered in the first diamond (left-hand side).

For CDx Article 58 & Annex XIV may be applicable to clinical evidence generation to demonstrate the clinical benefit of the device.

§ The required level of clinical evidence is outside the scope of this document and is addressed in the MedTech Europe WG guidance document titled ‘Clinical evidence levels under the Regulation 2017/746/EU on in-vitro diagnostic medical devices’.
Figure 5.1 Flow chart of benefit-risk requirements

Pre-Launch

Initial benefit-risk assessment as part of design control:
- Risk acceptability should be defined in the risk management plan (ISO14971:2019)
- The parameters to be used to determine the acceptability of the benefit-risk ratio are to be defined in the Performance Evaluation Plan (VDR: Annex XIII, 3 (indent 10))

- Are all risks acceptable as defined in the Risk Management Plan?
  - Yes: Complete/update Post Market Surveillance Plan (PMSP) and update Risk Management Plan. The PMSP shall describe suitable threshold values/parameters for continuous assessment and such parameters are to be used to determine if action should be taken (VDR: Annex III (1b))
  - No: Review benefit-risk analysis as scheduled in the Risk Management Plan and/or PMSP

- Does the benefit-risk analysis require updating?
  - Yes: Update benefit-risk analysis
  - No:
    - Have the threshold values/parameters been met?
      - Yes: Record review in risk management file
      - No: Act as required to address risks

Post-Launch

- Can further risk control measures be carried out that improve the benefit-risk ratio?
  - Yes: Update benefit-risk analysis and refer to this in the Performance Evaluation Report
  - No: Record in the risk management file & inform users of residual risks

- Carry out further risk control measures?
  - Yes: Record in the risk management file & inform users of residual risks
  - No: Review benefit-risk analysis as scheduled in the Risk Management Plan and/or PMSP
4) **Are there performance study specific requirements for subject participation where benefit-risk should be considered?**

There are additional requirements for certain ‘higher risk’ studies, as set out in article 58\(^1\), and detailed in annex XIV\(^1\). This is a separate aspect of benefit-risk as it considers the risks and benefits on a representative population and forms part of the performance study plan.

5) **What are the requirements for addressing benefit-risk post product launch?**

During post-market surveillance, the benefit-risk assessment shall be updated actively and systematically (Article 78 (3a) reading onto article 78 (2))\(^1\). The meaning of the term ‘actively and systematically’ is interpreted as being defined by the manufacturer in the post-market surveillance plan (PMSP) and is expected to include the defined depth and frequency of review, see Figure 5.1. The requirement in Annex XIII (4)\(^1\) ‘benefit-risk ratio is to be continuously monitored’ may be interpreted similarly.

Per Article 78 (1)\(^1\) the PMSP should be proportionate to the risk class and appropriate for the type of device. For the higher risk classifications, class C and D devices, the periodic safety update report (PSUR) should be updated throughout the lifetime of the device, and the conclusions of the risk-benefit assessment shall be set out (IVDR; Article 81 (1a))\(^1\).

If the benefit-risk assessment changes significantly, and has the potential to lead to unacceptable risk, then it should be reported (IVDR; Recital 82)\(^1\), see Figure 5.1. To allow determination of reportability, the PMSP shall describe suitable threshold values/parameters for continuous assessment to determine if action should be taken (IVDR; Annex III(1b))\(^1\).

Where defined thresholds are crossed, manufacturers should report this by means of the electronic system. This should also apply to any statistically significant increase in the frequency or severity of incidents that are not serious incidents that could have a significant impact on the benefit-risk (article 83)\(^1\).

For CDx, related serious incidents and field safety corrective actions (FSCA) associated with the drug should be considered. This is addressed in Article 84 (6): “In the case of companion diagnostic, the evaluating competent authority or the coordinating competent authority referred to in paragraph 9 of this Article shall, depending on whether the relevant competent authority of the Member State that authorised the medicinal products or the EMA was consulted by the notified body in accordance with the procedures set out in Section 5.2 of Annex IX\(^1\) and Section 3.11 of Annex X\(^1\), inform that national competent authority or the EMA, as appropriate”.

6) **What are the Notified Body (NB) considerations?**
The IVDR requires the NB to verify the adequacy of the benefit-risk determination through assessment of the technical documentation (Annex IX (4.6))

7) Is there guidance for carrying out the assessment of benefit-risk and how might this relate to IVDR requirements?

Clinical benefit may refer to the positive impact for the patient, patient management, or public health, according to IVDR, Article 2 (37). ISO/FDIS 14971:2019, alongside ISO/TDR 24971, are helpful pieces of information on benefit-risk analysis. The IVDR applies a specific meaning to the concept of clinical benefit, Recital 64 IVDR, which differs from therapeutic devices. Both medical devices and IVDs are within the scope of ISO/FDIS 14971:2019 and there are elements (relating to medical devices which would not be relevant for IVDs. Unless present in an intended purpose or other product claim, the downstream clinical benefits are not taken into consideration in a benefit-risk analysis, however, downstream risks should be considered as a part of the overall risks.

The standard does not provide examples of criteria for benefit-risk judgement as they would be specific to the product in question and its anticipated conditions of use. Criteria are therefore left to those writing the benefit-risk statements as they are best informed of the detailed performance of the device; examples of risks and benefits that may be considered are provided in Annex I of this document. As stated in Q&A 1, residual risks may be justified in the risk-benefit analysis once all practicable measures to reduce risk have been applied. Verification of the anticipated performance or effectiveness through a simulation study or an investigation (clinical) may be useful where significant residual risks are present to confirm that the benefit-risk balance is as expected and to prevent unwarranted exposure of patients to a large residual risk. In the context of the IVDR this requirement may be addressed by the objectives of the post-market performance follow up (Annex XIII Part B section 4) where the plans may be aimed at reducing the uncertainty of risk estimation by carrying out further studies.

Direct comparisons of benefit and risk can only be achieved if they are on a common scale. If a common scale is used, then the benefit-risk assessment may be quantitative. For IVDs, however, it is more likely that indirect benefit-risk assessments are made, and these are qualitative and not quantitative. Comparisons may be achieved using information available in the literature, comparison to current technology and data from clinical studies. Where risks are known, a measure of the benefit may be established from the reverse of the risk, for example, by comparing benefit of the availability of the device compared to the risks incurred due to its unavailability.

Some benefits may only be for a proportion of the patient population, for example the subset of the population where the IVD provides an increased sensitivity for a condition. Also, an improved precision of an assay may benefit the population as it may allow resources to be focused in a more efficient manner, or on an individual level may allow the patient to move more quickly down the right patient management pathway.

---

There is additional guidance on interpreting clinical benefit which can be found in Medtech Europe guidance document titled [Q&A Clinical Benefit](https://www.medtecheurope.org) available for MedTech Europe’s members.
Within the benefit-risk assessment it may be helpful to include characterisation of the disease or condition of the patient, and for high-benefit/high-risk devices the labelling should include adequate information to users and patients of significant residual risks in the accompanying documentation (ISO 14971 Section 8).\(^2\)

Review of other sources of information on risk-benefit decisions identified several examples from US FDA guidance documents, which provide helpful insights but are not legally binding for the European Regulation:

A) Guidance for Industry and Food and Drug Administration Staff: Benefit-Risk Factors to Consider When Determining Substantial Equivalence in Premarket Notifications (510(k)) with Different Technological Characteristics; Document issued on September 25, 2018\(^6\)

For diagnostic devices specifically, this Guidance discusses benefit(s) in reference to the nature of the public health impact, and could be based on a number of factors including:

- Identification of a specific disease;
- Provision of diagnosis at different stages of a disease;
- Prediction of future disease onset;
- Improvement of patient workflow;
- Increase in efficiency or examination;
- Provision of reproducible and quantifiable results contributing to the optimization of therapy and treatment; and
- Improvement of patient outcome (e.g., well-being, health status, safety of patients) by:
  - facilitating fewer missed diagnoses (or the right diagnosis the first time, hence the correct treatment plan) and/or
  - identification of patients likely to respond to a given therapy and therefore enable treatment of the disease or reduce/prevent its spread, which can often be measured through the use of patient-reported outcomes (PROs)

Guidance for Industry and Food and Drug Administration Staff: Factors to Consider Regarding Benefit Risk in Medical Device Product Availability, Compliance, and Enforcement Decisions; Document issued on December 27, 2016\(^7\).

This Guidance document assesses Information Concerning Extent of Probable Benefit(s) by considering the following factors individually and in aggregate

- Magnitude of the Benefit
  - defined by the accuracy and reproducibility of test results and by the expected effect of clinically applying those results
- Probability of the Patient Experiencing One or More Benefit(s)
  - which patients may experience a benefit (patient subgroups may experience different benefits or different levels of benefits)
  - Large benefit may be experienced by a small proportion of participants vs. small benefit experienced by a large proportion of participants
- Duration of Effect(s)
  - how long the benefit can be expected to last for the patient; does the treatment need to be repeated

An aspect of the PMS planning is to carry out reviews and updates of the benefit-risk analysis (Figure 5.1). Here, it is important to identify any new or unanticipated risks. It is also important to confirm that the anticipated
benefits are achieved and whether any additional benefits are observed. The following table may be a useful approach when reviewing the benefit through the post-market surveillance process.

**Table 5.2 Review of the benefit-risk from the perspective of PMS**

<table>
<thead>
<tr>
<th>Anticipated benefit</th>
<th>Initial assessment during pre-launch</th>
<th>Current assessment</th>
<th>Does the marketed device/product achieve the anticipated benefits?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type of benefits</td>
<td>What is the medical device’s anticipated impact on clinical management and patient health?</td>
<td>Using real-world data or other available data, what is the medical device’s impact on clinical management and patient health?</td>
<td>Have additional benefits been observed?</td>
</tr>
<tr>
<td></td>
<td>What benefits were initially anticipated?</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>What benefits were expected based on similar devices?</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 5.3 Benefit-risk differences across product groups and common IVD purposes

The below table lists the descriptions of the common test purposes for IVDs as defined in GHTF/SG5/N8:2012. The considerations in determining the benefits and risks are also provided. Table indicating how benefit-risk is different across product groups.

<table>
<thead>
<tr>
<th>Test Purpose</th>
<th>Description</th>
<th>Benefit</th>
<th>Risk</th>
</tr>
</thead>
</table>
| Diagnosis    | A common test purpose or function for an *in vitro* diagnostic medical device, whereby the test is used solely or principally to determine, verify or confirm a patient’s current clinical condition. Note: Adapted from GHTF SG5 N8R3  
In addition, the IVDR includes consideration of physiological or pathological process or state. Where an assay is used in diagnosis it may either be used in isolation or form an essential element (for example as part of an algorithm or guideline) that allows a diagnosis to be made. | Provides accurate information on the patient’s status that allows the treating clinician to make a diagnosis (determine, verify or confirm a patient’s condition) that may be used in isolation or as an essential element alongside additional available information. | An erroneous result may lead to the incorrect diagnosis, inability to diagnose, or delay in reaching the correct diagnosis. Depending on the urgency of the result, unavailability of an assay may lead to a delay in reaching the correct diagnosis, where this results in an unmet need. Incorrect labelling may result in correct results being interpreted incorrectly and thus have similar effects as false results. Such tests may be urgent and thus delayed or unavailable results could result in less informed patient management decisions. |
| Aid to Diagnosis | A common test purpose or function for an in vitro diagnostic medical device, whereby the test is used to provide additional information to assist in the determination or verification of a patient’s clinical status.  

**NOTE:** Adapted from GHTF SG5 N8R3\(^7\)  

Aid to diagnosis tests are used to provide additional information to assist/facilitate in the determination or verification of a patient’s clinical status, physiological or pathological process, or state/congenital physical or mental impairments. The test is not the sole determinant. These tests are designed to evaluate a patient’s current state. | Tests provide accurate information on the relevant biological/congenital/physical parameters that facilitate interpretation, diagnosis and related patient management decisions while taking into account the overall clinical picture. | An erroneous result may lead to a delay in reaching the correct diagnosis while other assessments are carried out.  

The clinician may have to explain the incongruous result to the patient.  

Incorrect labelling may result in correct results being interpreted incorrectly and thus have similar effects as erroneous results.  

Such tests may be urgent and thus delayed or unavailable results could result in less informed patient management decisions. |
<table>
<thead>
<tr>
<th>Test Purpose</th>
<th>Description</th>
<th>Benefit</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening</td>
<td>A common test purpose or function for an <em>in vitro</em> diagnostic medical device, whereby the test is used to detect the presence or absence of an analyte (measurand) in asymptomatic patients. NOTE: examples include tests for genetic screening, tests for early detection of disease, and tests used to reduce the risk of infectious disease transmission, such as assays for prenatal screening and donor screening (transfusion or transplantation). NOTE: Depending on the nature of the condition and the targeted patient population, screening tests may be used routinely or may be restricted to “at risk” patients. NOTE: Adapted from GHTF SG5 N8R3</td>
<td>Provides additional insight regarding patient’s status to the patient management team. Although screening is not necessarily diagnostic, it may lead to a more efficient patient pathway, and subsequent appropriate diagnostic pathway that could lead to public cost or health benefits as well as individual benefit.</td>
<td>Erroneous results may lead to delays in the patient following the most appropriate patient pathway, potentially leading to delayed diagnosis. Erroneous results may lead to further unnecessary follow up which may worry the patient and lead to unnecessary costs. Incorrect labelling may result in correct results being interpreted incorrectly and thus have similar effects as erroneous results.</td>
</tr>
<tr>
<td>Test Purpose</td>
<td>Description</td>
<td>Benefit</td>
<td>Risk</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>------</td>
</tr>
<tr>
<td>Monitoring</td>
<td>A common test purpose or function for an <em>in vitro</em> diagnostic medical device, whereby the test is used for serial measurement of the analyte (measurand) levels in order to detect/assess disease progression, regression, recurrence, minimal residual disease and/or response or resistance to therapy. <strong>NOTE:</strong> These tests are designed to evaluate changes in a patient's state. <strong>NOTE:</strong> adapted from GHTF SG N8R3⁷ Monitoring tests are used for the measurement of analyte levels for the purpose of adjusting treatments/interventions as required.</td>
<td>May allow more appropriate/effective treatment or patient management decisions. For example, this may contribute to better and stable physiological status of the patient (e.g. diabetic or HIV-1 suppression).</td>
<td>False results may lead to inappropriate or less effective patient management or interventions. Incorrect labelling may result in correct results being interpreted incorrectly and thus have similar effects as erroneous results.</td>
</tr>
<tr>
<td>Test Purpose</td>
<td>Description</td>
<td>Benefit</td>
<td>Risk</td>
</tr>
<tr>
<td>--------------</td>
<td>-------------</td>
<td>---------</td>
<td>------</td>
</tr>
</tbody>
</table>
| Predisposition | A common test purpose or function for an *in vitro* diagnostic medical device, whereby the test is used to determine the likelihood of disease onset (i.e. assessing the risk of developing the disease in the future) in pre-symptomatic patients.  
NOTE: For patients at sufficient risk (as determined by test results), preventive interventions may be taken.  
NOTE: These tests are designed to evaluate a patient's future state.  
NOTE: Adapted from GHTF SG5 N8R3⁷ | May allow decisions to be taken on lifestyle changes; benefit may have the potential to be both personal and to overall public health.  
May allow decisions on closer monitoring that could facilitate an improved patient workflow.  
For patients at sufficient risk, as indicated in medical guidelines or from clinical evidence, preventive interventions may be taken.  
Negative results may reduce worry for the individual. | False positive results could introduce undue concern and unnecessary monitoring.  
False negative results could result in less efficient patient workflow.  
Incorrect labelling may result in correct results being interpreted incorrectly and thus have similar effects as false results.  
Generally, not considered urgent tests and thus delayed or unavailable results would have negligible risks. |
<table>
<thead>
<tr>
<th>Test Purpose</th>
<th>Description</th>
<th>Benefit</th>
<th>Risk</th>
</tr>
</thead>
</table>
| Prediction (of Treatment Response or Reaction) | A common test purpose or function for an *in vitro* diagnostic medical device, whereby the test is used to measure factors that determine the likelihood of patient responses or adverse reactions to a specific therapy. 

   NOTE: These tests are designed to evaluate a patient's future state. 
   NOTE: Adapted from GHTF SG5 N8R3 ²

   IVDR, Article 2, (2) (e) ¹ to predict treatment response or reactions | Provide accurate information to the physician to take informed decisions on patient management. This may lead to more effective patient management and reduction of patient risk by reducing the impact or side effects of non/less effective patient management (treatment) strategies. | An erroneous result may lead to the wrong/less effective patient management strategy. |

   Some (e.g. CDx are guiding patient management e.g. therapy) others are more predictive or prognostic and thus enable the physician to take informed decisions on patient management. | In the case of a CDx an erroneous result may lead to less appropriate or inappropriate treatment. |

   Incorrect labelling may result in correct results being interpreted incorrectly and thus have similar effects as false results. | Such tests may be urgent and thus delayed or unavailable results could result in less informed patient management decisions. |
### Test Purpose

<table>
<thead>
<tr>
<th>Prognosis</th>
<th>Description</th>
<th>Benefit</th>
<th>Risk</th>
</tr>
</thead>
</table>
|            | A common test purpose or function for an *in vitro* diagnostic medical device, whereby the test is used to measure factors linked to clinical outcome irrespective of treatment. Such tests may be used to estimate the natural progression of a disease (i.e. outcome in the absence of treatment), or to determine the likelihood of a clinical outcome irrespective of therapeutic intervention.  
NOTE: These tests are designed to evaluate a patient's future state.  
NOTE: Adapted from GHTF SG5 N8R3  
A subset of prognosis may be the Risk assessment. This is considered a separate test purpose heading by the FDA and is described as the purpose ‘to determine the risk for progression to a particular pathological or physical status within a short timeframe while under treatment/assessment for another condition.’ | May allow the individual, family or patient management team to take more informed decisions on the potential clinical pathway.  
It may prepare the subject, family or patient management team for the likely progression of the condition.  
May be used by the patient management team to determine the risk for progression to a particular pathological or physical status within a short timeframe while under treatment/assessment for another condition. | False results may lead to more poorly informed decisions on the possible clinical pathways.  
False results may incorrectly prepare the subject, family or patient management team on the likely progression of the condition.  
Incorrect labelling may result in correct results being interpreted incorrectly and thus have similar effects as false results.  
Generally not considered urgent tests and thus delayed or unavailable results would have negligible risks. |
<table>
<thead>
<tr>
<th>Test Purpose</th>
<th>Description</th>
<th>Benefit</th>
<th>Risk</th>
</tr>
</thead>
<tbody>
<tr>
<td>Determination of physiological status</td>
<td>A common test purpose or function for an <em>in vitro</em> diagnostic medical device, whereby the test is used to evaluate the physiological state of an individual for the purpose of identifying a human condition or characteristic. NOTE: These tests are designed to evaluate a patient's current state. NOTE: Adapted from GHTF SG5 N8R3⁷</td>
<td>The physiological state may aid in the identification of the individual's condition or characteristic. This may help point the patient management team towards the underlying cause of presenting symptoms.</td>
<td>Incorrect results may contribute to patient management decisions that could have the potential to further exacerbate a patient's abnormal physiological state. Incorrect labelling may result in correct results being interpreted incorrectly and thus have similar effects as false results. Such tests may be urgent and thus delayed or unavailable results could result in less informed patient management decisions.</td>
</tr>
<tr>
<td>IVDR, Article 2, (2) (a)¹ concerning a physiological or pathological process or state. E.g. hCG test for the determination of pregnancy</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Footnotes:*
1. Products may not fall into neat categories or may fall across several categories.
   a. For example, glucose assessments may be discrete assays used for a single determination. Or they may be used in monitoring, such monitoring may be discrete assessments or continuous monitoring.

2. The details on the benefits and the risks are product specific as they will be dependent on the intended use/purpose and the extent of the claims within this. Aspects that may be considered include analytical and clinical performance, for example false positive and false negative incidence under normal conditions could be used to numerically estimate the incidence of benefits and risks.

3. The above benefits and risks are in relation to application of the assay result and not the use of the IVD.
   a. There are other potential benefits for the user and public health such as ease of use, cost, time, environmental etc.
   b. There are other potential risks to the user such as chemical, biological and physical hazards.
References:

1. Regulation 2017/746 of the European parliament and of the council of April 5, 2017 on *in vitro* diagnostic medical devices


3. EN ISO 14971:2012 Medical devices - Application of risk management to medical devices


5. IEC 62366-1:2015 Medical devices – Part 1: Application of usability engineering to medical devices


Note: for EU legislation please see latest consolidated version. For MedTech Europe documents, in case any links are broken, please consult the latest version under the [Regulatory E-Library](https://www.medtecheurope.org) (available only for members).
CHAPTER 6 – Clinical Evidence Levels

1) How is clinical evidence defined in the IVDR?

The IVDR introduces a new clinical evidence concept which is defined as follows:

Article 2(36) ‘clinical evidence’ means clinical data and performance evaluation results, pertaining to a device of a sufficient amount and quality to allow a qualified assessment of whether the device is safe and achieves the intended clinical benefit(s), when used as intended by the manufacturer;

Article 56 (2) - The clinical evidence shall support the intended purpose of the device as stated by the manufacturer and be based on a continuous process of performance evaluation, following a performance evaluation plan.

(3) A performance evaluation shall follow a defined and methodologically sound procedure for the demonstration of the following, in accordance with this Article and with Part A of Annex XIII:

(a) scientific validity (as defined in Art. 2 (39));
(b) analytical performance (as defined in Art. 2 (40));
(c) clinical performance (as defined in Art. 2 (41)).

The data and conclusions drawn from the assessment of those elements shall constitute the clinical evidence for the device. The clinical evidence shall be such as to scientifically demonstrate, by reference to the state of the art in medicine, that the intended clinical benefit(s) will be achieved and that the device is safe. The clinical evidence derived from the performance evaluation shall provide scientifically valid assurance that the relevant general safety and performance requirements, set out in Annex I, are fulfilled under normal conditions of use.

2) What is the justification for clinical evidence levels?

‘The manufacturer shall specify and justify the level of the clinical evidence necessary to demonstrate conformity with the relevant general safety and performance requirements. That level of clinical evidence shall be appropriate in view of the characteristics of the device and its intended purpose.’ (IVDR, Article 56 (1))

The IVDR does not define how much clinical evidence is required. It is the responsibility of the manufacturer to decide what is appropriate for their device, based on the intended use and risk class.

According to the principles of evidence-based medicine, the term evidence levels refers to strength, robustness, and/or quality of the evidence. These levels reflect the source of the evidence, statistical validity, clinical relevance, and peer-review acceptance. The concepts outlined below are specific to IVD medical devices and are based on general principles of evidence-based medicine.

3) What is the general guidance on clinical evidence levels?

The necessity and levels of clinical evidence may vary among IVD devices and classes.
‘Where specific devices have no analytical or clinical performance or specific performance requirements are not applicable, it is appropriate to justify in the performance evaluation plan, and related reports, omissions relating to such requirements’ (IVDR, Preamble 65). Devices without analytical performance include pipets or specimen receptacles, while devices without clinical performance include DNA extraction kits or therapeutic drug monitoring (TDM). As a consequence, performance evaluation reports do not need to include corresponding performance data (Annex XIII Part A (1.3.2)). Due to the applicability of clinical evidence components, the following chapters focus on class B, C and D devices.

If applicable, evidence levels for **analytical performance** and **scientific validity** can be similar for IVD devices regardless of the risk class. Because the IVDR classes are largely based on risks to individuals and/or to public health), the robustness and strength of the evidence should primarily relate to clinical performance. Consequently, evidence levels for **clinical performance** follow a risk-based approach. Thus, the strength and robustness of the clinical performance evidence should follow the following pattern: class B < class C < class D devices (see Figure 6.1 below).

![IVDR Risk Class and Clinical Evidence Levels](image)

**Figure 6.1 Risk-based evidence levels for analytical performance, scientific validity, and clinical performance**

4) **How much data is sufficient to demonstrate scientific validity?**

Evidence is always needed to prove scientific validity. However, depending on how well established the analyte is, the level and source of required evidence for demonstration of scientific validity may vary. For instance, if the device is well established and in routine clinical use, and if the association of the analyte to a clinical condition or physiological state is well established, evidence from the literature is enough to prove scientific validity. For novel devices, and in the absence of literature, scientific validity should be proven via clinical performance studies or proof of concept studies (GHTF/SG5/N7:2012, Section 6.0) 3.

5) **What are the sources for demonstrating clinical performance?**

Demonstration of the clinical performance of a device shall be based on one or a combination of the following:

- Clinical performance studies
- Scientific peer-reviewed literature
- Published experience gained by routine diagnostic testing

IVDR Article 56 (4) states that clinical performance studies in accordance with Section 2 of Part A of Annex XIII shall be carried out unless it is duly justified to rely on other sources of clinical performance data.
6) What are the options for clinical performance data?

As per the definition in the IVDR Article 2 (41), clinical performance means ‘the ability of a device to yield results that are correlated with a particular clinical condition or a physiological or pathological process or state in accordance with the target population and intended use’.

Based on this definition, there are three options for clinical performance:

1) Clinical performance defined as correlation with clinical condition/disease: For devices measuring specific analytes that are associated with a clinical condition/disease and have medical decision points (cut-offs), clinical performance data and a corresponding clinical performance report are required;

2) Clinical performance defined as correlation with a physiological or pathophysiological process or state: For devices measuring analytes without clear medical decision points (cut-offs) or for devices measuring analytes that are not (yet) associated with a clinical condition, clinical performance may be defined as correlation with physiological or pathophysiological process or state, or a justification for omission of clinical performance data may be considered; or

3) No clinical performance data based on a justification, e.g. for devices without analytical or clinical performance or specific performance requirements or a device that does not yield results correlating with a clinical condition or a physiological or pathological process or state.

Justification of omission of any clinical performance data is based on the following IVDR sections:

- Article 2 (39) ‘performance of a device’ means the ability of a device to achieve its intended purpose as claimed by the manufacturer. It consists of the analytical and, where applicable, the clinical performance supporting that intended purpose.

- Annex XIII Part A (1.2.3) Demonstration of the clinical performance: The manufacturer shall demonstrate the clinical performance of the device in relation to all the parameters described in point (b) of Section 9.1 of Annex I, unless any omission can be justified as not applicable.

In such cases, a clinical performance report is not applicable, but a performance evaluation report including the other clinical evidence components would still be required.
Table 6.1 Examples of IVD devices along with intended purpose and possible clinical performance. Please note that this table does not provide a comprehensive or prescriptive selection of intended purpose and clinical performance options.

<table>
<thead>
<tr>
<th>Options for clinical performance</th>
<th>IVD Device</th>
<th>Function / Intended Purpose / Intended Use</th>
<th>Clinical Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correlation with clinical condition/disease</td>
<td>Troponin T / I test</td>
<td>Diagnosis of acute myocardial infarction</td>
<td>Diagnostic sensitivity and specificity, AUC, NPV, PPV</td>
</tr>
<tr>
<td>Correlation with physiological process or state</td>
<td>Creatinine test</td>
<td>Assessment of kidney function</td>
<td>Agreement with other method measuring kidney function</td>
</tr>
<tr>
<td>No correlation with a clinical condition or a physiological or pathological process or state</td>
<td>Cyclosporine test</td>
<td>Therapeutic drug monitoring ††</td>
<td>Not applicable, reference ranges (if applicable). Omission to be justified in the respective Clinical Performance section of Performance Evaluation Plan and Report</td>
</tr>
</tbody>
</table>

†† A Therapeutic Drug Monitoring (TDM) device is a device without medical decision points. Clinical performance data cannot be generated for many TDM devices and the clinical benefit lies in the accurate information about the drug concentration for which different subtherapeutic and toxic drug levels may exist, depending on indications and population. Rationale for TDM: According to IVDR Article 2 (41), ‘clinical performance’ means the ability of a device to yield results that are correlated with a particular clinical condition or a physiological or pathological process or state in accordance with the target population and intended user. For products for Therapeutic Drug Monitoring (TDM), the assays measure the level of the administered drug and/or its metabolites in bodily fluids, e.g. blood, urine. These levels can show tremendous intra- and inter-patient variability, depending on a variety of factors, including time after treatment, concomitant medication, organ function, drug toxicity and others. Since the drug is usually administered to treat an underlying clinical condition and measurement of the concentration of the drug is used to determine whether the levels are within the therapeutic window for that specific patient, there is no direct connection of the device to a clinical condition or physiological process or state. Therefore, none of the clinical performance parameters referenced in IVDR Annex I, 9.1(b), e.g. diagnostic sensitivity, diagnostic specificity, positive or negative predictive value, likelihood ratio, expected values, is applicable. Determination of the therapeutic window, toxic or sub-therapeutic levels for each drug is the responsibility of the drug manufacturers and demonstration of clinical performance of an IVD device for TDM does not imply that IVD manufacturers determine sensitivity or specificity of finding such levels. Also, it has been demonstrated that the establishment of generalized reference (or therapeutic) ranges for most therapeutic drugs that require monitoring is extremely difficult, due to a wide variety of influencing factors. E.g. for cyclosporine therapeutic ranges in solid organ (kidney, liver, heart) transplant settings are not absolutely defined, as they can be widely variable, dependent on a clinical protocol, organ transplanted, time after transplant, risk of rejection, concomitant immunosuppressive drugs, organ function and cyclosporine toxicity. As a result, the analytical performance data (including method comparisons to a reference method or device) are sufficient to demonstrate that such a product is able to accurately and precisely measure the concentration of the drug and/or its metabolites, and, in consequence, is capable of monitoring the drug accordingly. If the data presented in the Analytical Performance Report show that the analyte is measured with sufficient accuracy and precision in human specimens, within the measuring range which covers the therapeutic range and potentially toxic concentrations (as established by the drug manufacturer), in accordance with IVDR Recital (65), Article 2 (39), Article 56 (1-3), product-specific clinical performance data can be judged to be unnecessary, and performance claims are addressed sufficiently by the analytical performance.
How much clinical performance data is sufficient to demonstrate ‘clinical evidence’?

Clinical performance data and evidence levels

As outlined in Annex XIII Part A (1.2.3) of the IVDR, clinical performance data can be demonstrated based on one or a combination of clinical performance studies, scientific peer-reviewed literature, and/or published experience gained by routine diagnostic testing (see also the chapter of this brochure on ‘published experience gained by routine diagnostic testing’). In any case, the strength and robustness of clinical performance evidence will ultimately depend on study design and biostatistical considerations.

In principle, demonstration of clinical performance can be direct or indirect or a combination thereof. Direct demonstration of clinical performance indicates that the data are based on the particular device produced by the IVD manufacturer and are obtained from studies using prospectively collected specimens or biobank/leftover specimens. Indirect demonstration indicates that the data are based on literature search or a comparison with a reference device (e.g. method comparison). Direct demonstration yields stronger evidence levels of clinical performance data than indirect demonstration and should accordingly be applied to higher risk class and / or novel devices. It should be noted that these principles relate to an individual clinical performance data set of a particular IVD device and not to the available pool of evidence of a reference IVD device. For example, a method comparison study may provide appropriate evidence for a particular IVD showing equivalence with a selected reference device that has a published and accepted strong body of clinical evidence.

![Diagram of clinical evidence levels for IVD classes B, C, and D](image)

**Figure 6.2 Clinical evidence levels for IVD classes B, C, and D**

It should be noted that multiple general evidence grading systems exist (e.g. GRADE⁵, QUADAS-2⁶, Hayes⁷) and they have been reviewed and considered under the proposed framework above.

**Drivers of the evidence level of clinical performance data include:**

1) Intended purpose/use
2) Groups according to the Global Harmonization Task Force (GHTF)³
   a) established, standardised device
   b) established, non-standardised device
Determining clinical performance indicators and study endpoints

A clear definition of the intended purpose/use is the first and essential step to determine the clinical performance indicator(s) and corresponding study endpoint(s) or data type(s) (see CHAPTER 1 – Intended Purpose/Use and References:
Regulation 2017/ 746/ EU of the European parliament and of the council of April 5, 2017 on in vitro diagnostic medical devices
GHTF/S/SG1/N045:2008 Principles of In Vitro Diagnostic (IVD) Medical Device Classification
IMDRF Essential principles v 2017 GHTF/SG1/N77:2012 Principles of Medical Device Classification

CHAPTER 2 – Analytical and clinical performance indicators). Specifically, the clinical function in the intended purpose defines the clinical performance indicator(s)/data type(s) and the study endpoint(s) the study endpoint(s), e.g., diagnostic sensitivity and specificity for a test claiming a diagnostic intended purpose/use and a hazard ratio for a test claiming prognostic intended purpose. A device’s intended purpose and target population also define the IVD risk class.

The strongest clinical performance data are derived from adequately statistically powered prospective clinical performance studies. The vast majority of these studies are typically observational, thus non-interventional in design. This may be an option for novel devices, if no biobank or leftover samples are available. Wherever available or applicable, the generation of clinical performance data should follow the EU Common Specifications or international technical specifications (e.g. WHO, ISO 15197 ‘Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus’ and ISO 17593 ‘Requirements for in vitro monitoring systems for self-testing of oral anticoagulant therapy’).

Retrospective studies typically use biobank or leftover samples representing the intended purpose/use population along with the necessary clinical data to determine clinical performance. Like prospective studies, they need to be adequately powered to yield robust clinical performance data. Retrospective studies may lead to more bias than prospective studies (selection bias, changes in medical practice, etc.). Therefore, retrospective clinical performance studies may be an option for novel and established devices depending on the quality of the samples.

Indirect demonstration of clinical performance can be shown using a method comparison study against a reference device, provided that the clinical performance of the reference device is known and published. This may be an option for established devices, but not standardised devices. Finally, an option for established and standardised devices may be indirect demonstration of clinical performance via published data from reference devices, provided the analytical performance determination is performed using standardised device and reference material.
*Please note that it is the manufacturer’s sole responsibility to choose an appropriate and applicable performance indicator and that not all mentioned performance indicators are applicable to all devices.

**Figure 6.3 Flowchart for Clinical Performance**

**Figure 6.4 Flow chart for options of clinical performance data types and evidence levels**

7) **How can post-market data be used to satisfy the clinical evidence requirements of established products?**

Post-market data may allow manufacturers to comply with clinical evidence requirements in the technical files of established products. Annex XIII of the IVDR requires that manufacturers demonstrate clinical
The performance of their products (unless duly justified to omit it), which will be documented in the Clinical Performance Report (CPR) (IVDR, Annex XIII, Section 1.2.3). The demonstration of clinical performance of a device can be based on one or a combination of clinical performance studies, scientific peer-reviewed literature or published experience gained by routine diagnostic testing. See CHAPTER 7 – How to demonstrate evidence gained from ‘published/documented routine testing’ and CHAPTER 12 – Documentation of Performance Evaluation requirements.

The use of post-market data to address clinical evidence requirements should be subject to the appropriate risk analysis. This should consider how critical it is for the safety and performance of the device in question.

**Definitions of Novel, Established and Standardised Devices**

**Novel Device**
- a device which incorporates technology (the analyte, technology or test platform) not previously used in diagnostics and not continuously available on the European Community market during the previous three years, or;
- an existing device which is being used for a new intended purpose for the first time.

**Established Status**
- Established tests have clinical guidelines and/or consensus for the use of the test and/or are medically accepted as gold standard

**Standardisation**
1) An international standard or accepted reference materials (e.g. WHO) of the analyte exists, and
2) More than one commercial test is available, and
3) Standardised devices/tests produce equivalent results for the analyte regardless of the method/manufacturer. Equivalence will depend on the device, intended purpose/use, risk class, and authority view.
References:

1. Regulation EU 2017/ 746 of the European parliament and of the council of April 5, 2017 on \textit{in vitro} diagnostic medical devices


4. Definitions from MDEG New and Emerging Technologies Task Force


7. The Hayes Rating, \url{https://www.hayesinc.com/hayes/about/hayes-rating/}
CHAPTER 7 – How to demonstrate evidence gained from ‘published/documented routine testing’

According to the IVDR, demonstration of the clinical performance of a device shall be based on one or a combination of clinical performance studies, scientific peer-reviewed literature and/or published experience gained by routine diagnostic testing.

Under the IVDD, clinical performance studies are already a source of data for the demonstration of clinical performance. Scientific peer-reviewed literature includes articles from journals, posters from conferences, guidance or documents from official websites (i.e. MedTech Europe, IMDRF, WHO, local authorities, European Medicines Agency etc.) and/or guidelines and textbooks, provided that the data is peer-reviewed. However, the third possible source (published experience gained by routine diagnostic testing) is open to more interpretation. This brochure aims to help manufacturers meet the expectations implied by the IVDR.

If a manufacturer chooses to use experience data from routine diagnostic testing, it is important that any reports or collations of data contain sufficient information. This information must allow the undertaking of a rational and objective assessment and ultimately support the conclusion of its significance with respect to the performance of the IVD medical device in question. Reports of such experience that are not adequately supported by data, such as anecdotal reports or opinion, should not be used. For established products, routine diagnostic testing (including Post Market Performance Follow-up (PMPF) data) is expected to be immediately available and can be used as clinical evidence, in addition to existing performance evaluations and scientific literature.

1) As literature is ‘published’, does published experience refer to literature?

No, it is a supplementary item in the Regulation, separate from literature, since literature is already covered in the second indent of Annex XIII, Part A, 1.2.3

2) What do we mean by published?

The definition‡‡ is broad and includes:

- Information that is issued (printed or otherwise reproduced textual material etc.) for sale or distribution to the public
- Information that is issued publicly§§
- Information that is submitted (content) online, (e.g. laboratory/hospital intranet)
- Information that is announced formally or officially; proclaimed; promulgated
- Information that can be accessed upon request (e.g. internal document)

Any published item should be authored (identifiable source) and cover the intended purpose.

3) What does published experience refer to?

Any document or set(s) of data coming from the use of the device and are published (according to the above definition).

‡‡ Modified from Dictionary.com

§§ Might be free of charge (e.g. website from clinical labs)
4) Can we use PMPF data as part of published experience gained by routine diagnostic testing?

Yes, post-market surveillance data generated by the manufacturer (e.g. customer testing results) can be used. PMPF data can be complemented if required, by literature, other routine diagnostic testing or further studies.

5) What other kind of data are included in published experience gained by routine diagnostic testing?

After having considered the quality and robustness of data (case by case analysis), we propose including any of the following:

- data from evaluation or re-evaluation by competent authorities (e.g. ANSM in France)
- data from accreditation (laboratory validation data)
- proficiency data report/external quality assurance data (e.g. independent medical and/or laboratory associations such as WHO or IFCC)
- data from post-launch studies (after CE marking)
- data from investigator-initiated studies
- data from real-world evidence, e.g. registries
- data from Health Economics and Outcome Research (HEOR) studies
References:

1. Regulation EU 2017/746 of the European parliament and of the council of April 5, 2017 on in vitro diagnostic medical devices
CHAPTER 8 – Equivalence and similarity concepts in the IVDR

1) Where and how are the terms ‘equivalence’ and ‘similar’ used in the IVDR? And how are they defined?

The IVDR does not include a definition of ‘equivalence’ or ‘similar’ even though both terms are used either alone or in combination in relation to performance evaluation and post-market surveillance.

Table 8.1 Compilation of references of terms ‘equivalence’, ‘equivalent’, ‘similar’ throughout the IVDR

<table>
<thead>
<tr>
<th>The IVDR uses the terms ‘equivalence’ or ‘equivalent’ or ‘similar’ or ‘equivalent and/or similar’ in the following ways:</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Preamble</strong></td>
</tr>
<tr>
<td><strong>Article 2: Definitions</strong></td>
</tr>
<tr>
<td><strong>Generic device group</strong></td>
</tr>
<tr>
<td><strong>Annex I: General Safety and Performance Requirements; Chapter II</strong></td>
</tr>
<tr>
<td><strong>Annex II: Technical Documentation</strong></td>
</tr>
<tr>
<td><strong>1.2</strong></td>
</tr>
<tr>
<td><strong>Annex III: Technical Documentation on Post-Market Surveillance</strong></td>
</tr>
<tr>
<td>Annex VII: Requirements to be met by Notified Bodies</td>
</tr>
<tr>
<td>-----------------------------------------------------</td>
</tr>
<tr>
<td>- The notified body’s assessment of the performance evaluation as referred to Annex XIII shall cover:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex VII: Requirements to be meet by NB</th>
<th>4.10 Surveillance activities and post-certification monitoring</th>
</tr>
</thead>
<tbody>
<tr>
<td>- The NB shall, if listed as part of the conditions for certification:</td>
<td>- conduct an in-depth review of the performance evaluation as most recently updated by the manufacturer based on the manufacturer's post-market surveillance, on its PMPF and on clinical literature relevant to the condition being treated with the device or on clinical literature relevant to <strong>similar</strong> devices</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex IX: Conformity Assessment based on a Quality Management System and on assessment of Technical Documentation</th>
<th>Chapter I Quality Management System</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c) the procedures and techniques for monitoring, verifying, validating and controlling the design of the devices, and the corresponding documentation as well as the data and records arising from those procedures and techniques. Those procedures and techniques shall specifically cover</td>
<td>- the strategy for regulatory compliance, including processes for identification of relevant legal requirements, qualification, classification, handling of <strong>equivalence</strong>, choice of, and compliance with, conformity assessment procedures</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex X: Conformity Assessment based on Type-Examination</th>
<th>Chapter II Assessment of the Technical Documentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.5 The notified body shall, in circumstances in which the clinical evidence is based partly or totally on data from devices which are claimed to be <strong>equivalent</strong> to the device under assessment, assess the suitability of using such data, taking into account factors such as new indications and innovation. The notified body shall clearly document its conclusions on the claimed <strong>equivalence</strong>, and on the relevance and adequacy of the data for demonstrating conformity;</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Annex XIII: Post-Market Performance follow up</th>
<th>5.2 The PMPF plan shall include at least:</th>
</tr>
</thead>
<tbody>
<tr>
<td>(f) an evaluation of the performance data relating to <strong>equivalent</strong> or <strong>similar</strong> devices, and the current state of the art</td>
<td></td>
</tr>
</tbody>
</table>
2) Do the terms ‘equivalence’ and ‘similar’ have different meanings?

The IVDR does not suggest different meanings for ‘equivalent’ and ‘similar’ as both terms are associated with product characteristics which can be assessed by comparison. Nevertheless, the results of such comparison can be interpreted differently.

1) ‘Similar’ can be interpreted as a broader and softer term. Devices can be considered as similar based on a review of publicly available product data, including e.g. instruction for use, product composition, design, features, intended purpose and/or the performance of another, comparator device. No in-depth analysis or systematic method comparison study is required.

1) ‘Equivalent’ can be considered as a narrower and stronger term. Objectively, a device is considered as equivalent when, based on a review of publicly available product data, the device in question is either almost identical to the comparator device or identical to the comparator device regarding the product composition, design, features, or intended purpose. In order to demonstrate equivalent performance, a systematic method comparison is required, where performance should correspond to the performance of a comparator device within the pre-defined limits (e.g. CLSI guidelines for method comparison).

- Hence, a device can be considered as similar if there are no meaningful differences in safety as well as analytical and/or clinical performance of the device. A device can be considered as equivalent if there are no meaningful differences in the critical characteristics.

3) How can similarity or equivalence of a device in question be assessed?

Table 8.2 aims at providing guidance on how to assess similarity or equivalence of an IVD device based on the IVD-relevant characteristics, such as technical, analytical, biological and clinical features. The goal of this comparison is to identify any meaningful difference in the safety as well as the analytical and/or clinical performance of a device under evaluation. In order to perform such an assessment, manufacturers are
required to be able to access the relevant data of a comparator device to which they claim equivalence or similarity.

Table 8.2 Assessment of similarity and/or equivalence of IVD devices. Please note that this table does not provide a comprehensive or prescriptive selection of meaningful characteristics. It is the manufacturer’s sole responsibility to define an appropriate concept.

<table>
<thead>
<tr>
<th>Device characteristics</th>
<th>Device 1 (device under evaluation)</th>
<th>Device 2 (device to which IVD similarity and/or equivalence is claimed)</th>
<th>Differences Device 1 vs Device 2</th>
<th>Applied standards and/or other guidelines</th>
<th>Justification for claiming IVD similarity and/or equivalence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Medical device nomenclature code</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Technology (e.g. ELISA, Western Blot, PCR, Flow Cytometry)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Device Design (e.g. sample volume, processing and incubation time, critical reaction component(s), read-out technology (e.g. chemiluminescence))</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Automated or manual system, operating conditions</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Analytical performance characteristics (Annex I, Chapter II, 9.1 and Annex II, Section 6.1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specimen type(s)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### How to use this table?

The table lists possible technical, analytical, biological and clinical characteristics of an IVD device. It is a non-exhaustive and non-prescriptive compilation of different parameters; therefore, the chosen comparison criteria shall be relevant to a device under evaluation. Based on the proposed definitions for similarity and/or equivalence, each feature (technical, analytical, biological and clinical) will be rated as either similar or equivalent, followed by a qualitative evaluation.

<table>
<thead>
<tr>
<th>Biological controls (metrological traceability)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Antibodies (polyclonal/monoclonal)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intended purpose</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Target population</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Intended user (professional use, near patient test, self-testing)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Test limitations</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scientific validity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical performance</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annex I, Chapter II, 9.1 (b)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Clinical benefit</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
References:

2. Regulation EU 2017/746 of the European parliament and of the council of April 5, 2017 on *in vitro* diagnostic medical devices
CHAPTER 9 – Companion Diagnostics

1) How are Companion Diagnostics described in the IVDR?

Recitals 10 to 12 and Article 2 (7) of the IVDR introduce a new companion diagnostics concept.

Recital 10  
(…) tests that provide information to predict treatment response or reactions, such as companion diagnostics, are in vitro diagnostic medical devices

Recital 11  
Companion diagnostics are essential for

defining patients’ eligibility for specific treatment with a medicinal product through the quantitative or qualitative determination of specific markers identifying subjects at a higher risk of developing an adverse reaction to the medicinal product in question or

identifying patients in the population for whom the therapeutic product has been adequately studied and found safe and effective. Such biomarker or biomarkers can be present in healthy subjects and/or in patients.

Article 2.7  
Companion diagnostic means a device which is essential for the safe and effective use of a corresponding medicinal product to:

(a) identify, before and/or during treatment, patients who are most likely to benefit from the corresponding medicinal product; or

(b) identify, before and/or during treatment, patients likely to be at increased risk of serious adverse reactions as a result of treatment with the corresponding medicinal product;

2) What are NOT companion diagnostics***?

A. The IVDR Recital 12 clarifies that “Devices that are used with a view to monitor treatment with a medicinal product in order to ensure that the concentration of relevant substances in the human body is within the therapeutic window are not considered to be companion diagnostics”.

Examples include:

   a. Cyclosporine as a Therapeutic Drug Monitoring Devices (TDM)

   The introduction of cyclosporine into clinical practice improved transplant outcome. A narrow therapeutic index coupled with variable absorption and unpredictable pharmacokinetics has resulted in the need to measure cyclosporine blood concentrations to enable the dose of the drug to be individualized to the patient. When this is done correctly therapeutic efficacy can be maximized while toxicity is kept to a minimum².

---

*** Complementary Diagnostic Assays are neither defined nor described in the IVDR but are generally understood as recommended but not required for the safe and effective use of a medicinal product. They may for instance aid physicians in identifying patients who may be relatively more likely to derive benefit from treatment with a particular medicinal product ³
Such a device intended to monitor levels of medicinal products, substances or biological component is classified IVDR Annex XIII, rule 3 (j). Please see for further information the Chapter 6 – Clinical Evidence Levels section ‘Clinical Performance of IVD Devices for Therapeutic Drug Monitoring (TDM)’

**b. Blood glucose monitoring devices**

These devices are intended for the quantitative measurement of blood glucose levels in freshly collected capillary blood samples. Such monitors provide immediate information to the user on whether the blood sugar is too high (hyperglycaemia) or too low (hypoglycaemia). In cases of hyperglycaemia, the test result is then used to calculate an adequate insulin dosage to be administered to the patient. Such devices, intended to monitor by determination of the blood glucose levels whether results are within the acceptable range, do not follow the definition of CDx in Article 2 (f) as described in question 1.

**B. If a study test result does not lead to any treatment decision or is used in the context of enrichment and/or exploratory studies, such devices are not companion diagnostics with the meaning of the CDx definition in Article 2 (f) as described in question 1.**

a. Enrichment is the prospective use of any patient characteristic to select a study population in which detection of a drug effect (if one is in fact present) is more likely than it would be in an unselected population. Enrichment strategies are intended to increase the efficiency of drug development and support precision medicine, i.e., tailoring treatments to those patients who will benefit based on clinical laboratory, genomic, and proteomic factors.

b. **Exploratory investigational new drug (IND) study** is intended to describe a clinical trial that
   - is conducted early in phase 1
   - involves very limited human exposure
   - has no therapeutic or diagnostic intent (e.g., screening studies, micro-dose studies)

### 3) What are the requirements for companion diagnostics performance studies?

A CDx performance study is:

- A certain performance study as described in Article 58 (2) as follows: ‘performance studies involving companion diagnostics shall be subject to the same requirements as the performance studies listed in Article 58 paragraph (1)’

- covered by the term ‘interventional clinical performance study’ as defined in the IVDR §2 (46): ‘interventional clinical performance study is a clinical performance study where the test results may influence patient management decisions and/or may be used to guide treatment or where the conduct of the study involves additional invasive procedures or other risks for the subjects of the studies’

It follows that performance studies involving companion diagnostics must meet the

- General requirements set out in Article 57 and Annex XIII
- Additional requirements set out in Art 58 to 77 and Annex XIV.
In the special situation where only leftover or archived samples††† are used, the IVDR emphasizes that most of the additional requirements do not apply to performance studies involving companion diagnostics / Article 58(2). Such studies must, however, be notified to the competent authority.

A study concept with leftover or archived samples may play a role in bridging studies e.g. bridging clinical trial assay (CTA) with final CDx with samples taken at time of the CTA or adaption of an established CDx test on a new instrument platform by linking the existing clinical data set to the new combination.

CDx studies should be conducted based on an adequate analytical performance and scientific validity data set. If the scientific validity for the Companion Diagnostic is not established, manufacturers must provide the scientific rationale for the use of the biomarker.

††† How are leftover & archived specimens defined?

- Retrospective samples may include leftover, banked, archived or residual specimens.
- The IVDR text does not define any of these terms.
- The ISO standard contains no definition for banked or residual samples but refers to tissue banks or biobanks.
- The ISO 20916 defined these terms as follows⁶:
  - ‘Leftover specimen = leftover sample as unadulterated remnants of human derived specimens collected as part of routine clinical practice and after all standard analysis has been performed
  - Note 1 to entry: Such specimens/samples would be otherwise discarded as there is no remaining clinical need for them. Note 2 to entry: This can include specimens collected for research or other purposes not connected to the clinical performance study in question’.

A) The GHTF/SG5/N8: 2012 defined archived samples as follows⁷

- **Archived specimen = archived sample specimen or sample** (3.4.2) that was collected in the past and is obtained from repositories (e.g. tissue banks, commercial vendor collections)
An overview of the IVDR general and additional requirements in relation to CDx performance studies is shown in the Figure 9.1 below.

**Figure 9.1 IVDR Requirements for CDx study using leftover/archived samples compared to interventional CDx study and specimen collection with additional risk to the subjects**

1) **When can a CDx interventional clinical performance be initiated?**

In addition to the ethics review and other local requirements, an interventional clinical performance study needs to be authorised by the Member State(s) in which the study is to be conducted (Article 58 (5) a) according to the procedure described in Article 66.

The application for the interventional study includes in principle the unique single identification number for the study, the opinion of the ethics committee, Informed consent from the study subjects and the application dossier in accordance with section 2 and 3 of Annex XIII and Chapter I of Annex XIV.

Based on Article 66 the Notified Body is not involved into the application process. However, with regard to the documents to be submitted to the authorities, further developments need to be tracked. Submission takes place via the clinical module of the EUDAMED system (Article 69).

The Member States notify the sponsor of the authorization. If the study is conducted in more than one Member State, the so called ‘coordinating Members State’ (Article 74) will inform the sponsor. It must be noted that the ‘Coordinated assessment procedure for performance studies’ under Article 74 is not yet introduced.

The process flow about the application for an interventional CDx performance study based on the articles 66,67 and 71 is displayed in the Figure 9.2 below.
4) When can a CDX study with leftover or archived samples be initiated?

This type of study must be notified to the competent authorities(s) (Article 58(2)) from the Member State(s) where the study is conducted. Prerequisite for the notification is no objection from an ethics committee from the Member State where the study is conducted.

Unlike the authorization, it is unclear if this notification is planned as a national notification or if it will be done over the clinical module from EUDAMED (Article 69). In principle the sponsor can start the study after the notification. However, national laws should be considered.

5) What are the specific labelling requirements of devices used in interventional performance studies?

CDx devices, used in an interventional or performance study using leftover samples only, should indicate on the product label that this is a ‘device for performance study’ (Annex I, 20.2 (e)). Such a product label cannot bear the CE-mark because only devices, other than devices for performance studies, considered to be in conformity with the requirements of the Regulation shall bear the CE marking of conformity (Article 18.1).

6) What are the components of Clinical Evidence relevant for CDx?
The clinical evidence aspects for CDx devices are similar to other IVD devices as discussed previously in this brochure. Specifically, clinical evidence for CDx IVD devices includes the demonstration of scientific validity, analytical performance, and clinical performance in accordance with IVDR Article 56 and with Part A of Annex XIII and Article 58 with Annex XIV.

7) What are the typical indicators of analytical and clinical performance?

Indicators of analytical performance are typically similar or even identical across IVD devices, including CDx devices (see Q&A on Analytical vs Clinical Performance). Conversely, indicators of clinical performance vary and depend strongly on the Intended Purpose/Use. Specifically, the clinical function in the Intended Purpose/Use defines clinical performance indicator (see Table 9.1 below).

In the case of CDx devices, the two typical clinical functions in the Intended Purpose/Use are:

– ‘therapy stratification’ (also known as ‘therapy response prediction’, or ‘predictive CDx Intended Use’ in other references), or less frequently
– ‘therapy selection’ (also known as ‘selective CDx Intended Use’ similar to therapy stratification, but applied when a “marker positive only” study design is used).

No other Intended Purpose/Use than ‘therapy stratification’ or ‘therapy selection’ is considered in this Q&A document (e.g. ‘complementary diagnostics’ or ‘precision dosing’ diagnostics are not CDx and are therefore out of scope as described under 2).

This CDx-specific Intended Purpose/Use requires evidence to describe the IVD device performance in the context of the corresponding therapy with regards to the efficacy and safety of the therapeutic. Thus, the medical treatment of the patient needs to be taken into consideration in order to generate appropriate clinical evidence for a CDx device to stratify or select a specific therapy. This is possible during co-development of IVD CDx and therapeutic or after development of the therapeutic.

In the latter case, a clinical trial assay (CTA) instead of the final CDx can be used for patient management in the clinical trial. In this case, a concordance study (or bridging study) including appropriate statistical analysis is required to assess the agreement between CDx and CTA in order to bridge the clinical data (e.g. overall survival) from CTA to CDx and to evaluate the therapeutic efficacy in CDx intended use population.

Another example of CDx development after launch of a therapeutic is a follow-on CDx device, when concordance to a previously developed comparator CDx to a therapeutic can already be shown.

In any case, a corresponding study and analysis needs to show that the proposed CDx device is able to stratify or select the patients into likely responders or on-responders (see Table 9.1), and subsequently also show that the group of patients that was characterized as likely responders were also the ones that benefitted the most from the treatment and/or show favourable safety. Accordingly, clinical performance indicator(s) and thus, the endpoints of the corresponding studies, are typically driven by the intended benefit of the therapeutic. Moreover, such a study may consist of a retrospective analysis of biobank samples and corresponding clinical data (typically from drug development trials using a similar IVD device) and/or a prospective study, i.e. a randomized controlled interventional clinical outcome study that is typically the pivotal drug trial. The selected study design may depend on the development phase of the therapeutic, the scientific validity of the test (including similarity of molecular diagnostic and therapeutic targets), the benefit risk ratio of the therapeutic, and other factors.
Table 9.1 Possible examples of analytical and clinical performance indicators based on the intended purpose. Therapy stratification or therapy selection is the typical intended purpose/use of CDx devices

**Typical Performance Indicators**

<table>
<thead>
<tr>
<th>Analytical Performance</th>
<th>Clinical Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Intended Purpose</strong></td>
<td><strong>Performance Indicator</strong></td>
</tr>
<tr>
<td>Screening</td>
<td>Diagnostic Sensitivity &amp; Specificity, AUC, or NPV, PPV</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Diagnostic Sensitivity &amp; Specificity, AUC, or NPV, PPV</td>
</tr>
<tr>
<td>Classification</td>
<td>Agreement table, or Net Reclassification Index (NRI)</td>
</tr>
<tr>
<td>Prognosis</td>
<td>Hazard Ratio, Kaplan-Meier curves, or C-index</td>
</tr>
<tr>
<td>Disease monitoring</td>
<td>Diagnostic Sensitivity &amp; Specificity, AUC, or NPV, PPV</td>
</tr>
<tr>
<td><strong>Therapy stratification</strong></td>
<td>Outcome measure, e.g. response rate, survival, Hazard ratio, etc.</td>
</tr>
<tr>
<td><strong>Therapy selection</strong></td>
<td>Agreement table</td>
</tr>
<tr>
<td><strong>Pathological function / state</strong></td>
<td>Agreement table</td>
</tr>
<tr>
<td>For all Intended Purposes</td>
<td>Expected values in normal and affected populations</td>
</tr>
</tbody>
</table>

*Please note that this table does not provide a comprehensive or prescriptive selection of performance indicators. It is the manufacturer’s sole responsibility to define an appropriate clinical evidence concept.*

**Box 1: Abbreviations**

- AUC: Area under the curve
- LoB: Limit of blank
- LoD: Limit of detection
- LoQ: Limit of quantification
- NPV: Negative predictive value
- NRI: Net reclassification index
- PPV: Positive predictive value
Table 9.2 Examples of different Intended Purposes/Uses and how they drive the selection of clinical performance indicators, possible study populations, potential study designs, and IVD device examples

<table>
<thead>
<tr>
<th>Intended Purpose</th>
<th>Performance Indicator</th>
<th>Study population</th>
<th>Study design</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screening (early detection of subclinical disease)</td>
<td>Diagnostic sensitivity &amp; specificity (against the &quot;gold standard&quot;/reference method), AUC, NPV, PPV</td>
<td>Subjects at risk (indicated for screening) Could be population level</td>
<td>Prospective or retrospective observational, longitudinal study (1-arm) or corresponding RWD</td>
<td>Bloodscreening for Infectious Diseases</td>
</tr>
<tr>
<td>Diagnosis</td>
<td>Diagnostic sensitivity &amp; specificity (against the &quot;gold standard&quot;/reference method), AUC, NPV, PPV</td>
<td>Subjects with signs and symptoms of disease</td>
<td>Prospective or retrospective observational cohort study or cross-sectional case-control study</td>
<td>Troponins for AMI</td>
</tr>
<tr>
<td>Classification / Grading</td>
<td>Agreement tables, NRI (Net Reclassification Index), if a gold standard available; also Sero/Spec</td>
<td>Subjects diagnosed with the disease of interest</td>
<td>Prospective or retrospective observational study, &quot;case-control&quot; study (cases with different grading)</td>
<td>Creatinine for kidney function / failure</td>
</tr>
<tr>
<td>Prognosis /Risk Stratification</td>
<td>Hazard ratio, Odds ratio, Kaplan-Meier curves, C-index, NRI, absolute survival estimates</td>
<td>Depending on U, population level, or subjects with disease</td>
<td>Prospective or retrospective observational study (less preferred: case-control study)</td>
<td>CRP, LDL</td>
</tr>
<tr>
<td>Disease monitoring</td>
<td>Diagnostic sensitivity &amp; specificity, AUC (against gold standard), NPV, PPV</td>
<td>Diseased patients with or without treatment</td>
<td>Prospective or retrospective observational longitudinal study</td>
<td>Glucose, PSA</td>
</tr>
<tr>
<td>Therapy stratification (CDx)</td>
<td>Patient outcome measure and interaction analysis (CDx defined group for therapeutic efficacy and/or safety)</td>
<td>All-comers (all patients under treatment of the drug)</td>
<td>Clinical outcome study/prospective randomized controlled trial (RCT) or retrospective study (Concordance (bridging) studies)</td>
<td>HER2, BRAF, KRAS</td>
</tr>
<tr>
<td>Therapy selection (CDx)</td>
<td>Patient outcome measure and interaction analysis (CDx defined group for therapeutic efficacy and/or safety)</td>
<td>Biomarker-positive patients</td>
<td>Clinical outcome study/prospective RCT or retrospective study (Concordance (bridging) studies)</td>
<td>BRAF</td>
</tr>
</tbody>
</table>

Please note that this table does not provide a comprehensive or prescriptive selection of performance indicators, study populations, or study designs. It shows possible options of these clinical evidence concepts. It is the manufacturer’s sole responsibility to define an appropriate clinical evidence concept. Furthermore, the demonstration of clinical utility is not a requirement according to 2017/746/EU. For the CDx Intended Use of Therapy Stratification or Therapy Selection, a clinical outcome study may be involved defining the clinical performance of the CDx in terms of the corresponding therapeutic.

8) Where should the manufacturer document the cut-offs/medical decision points?

As mentioned in the Q&A on Analytical vs Clinical Performance, IVDR mentions cut-off under analytical performance. Therefore, cut-offs should be documented in the analytical performance report, unless justified. The selection of a cut-off of a CDx device may require a) clinical (or surrogate) outcome data arising from prospective or retrospective trial data involving the therapeutic to be stratified or a comparator CDx device in case of a follow-on CDx.

9) What is the Clinical Benefit of a CDx device?

For the vast majority of (standalone) IVD devices, the clinical benefit focuses on the ‘accurate medical information’ output of an IVD device, in context of the Intended Purpose/Use as defined by the manufacturer and in conjunction with other medical information (see Q&A on Intended Purpose/Use). In contrast to standalone IVD devices, the clinical benefit and the corresponding clinical evidence of CDx IVD devices
include the potential benefits as a result of treatment with the corresponding therapeutic product (i.e. clinical outcome; see also Figure 9.3 below).

Accordingly, recital (11) states “Companion diagnostics are essential for defining patients' eligibility for specific treatment with a medicinal product through the quantitative or qualitative determination of specific markers identifying subjects at a higher risk of developing an adverse reaction to the medicinal product in question or identifying patients in the population for whom the therapeutic product has been adequately studied and found safe and effective. Such biomarker or biomarkers can be present in healthy subjects and/or in patients.”

Determination of safety and effectiveness is covered by the corresponding drug law.

10) What are typical examples of a CDx Clinical Benefit Assessment (according to IVDR 2017/746/EU Article 2 (37) and Recital 64)

The following clinical benefit assessment examples relate to the potential clinical benefit of a CDx-specific intended purpose/use of therapy stratification and/or therapy selection.

**Clinical Benefit Assessment of a HER2 CDx Device** (therapy stratification)

Based on the analytical and clinical performance, this IVD device achieves the clinical benefit of accurately detecting HER2 antigen in normal and neoplastic breast and gastric tissue and providing medical information about breast and gastric cancer patients for whom Anti-HER2 therapy is considered. In conjunction with histological examination, relevant clinical information, and proper controls, this information allows physicians to consider therapeutic interventions using anti-HER2 therapies per individual drug labels and/or clinical guidelines.

**Clinical Benefit Assessment of a KRAS CDx Device** (therapy stratification)

Based on the analytical and clinical performance, this IVD device achieves the clinical benefit of identifying CRC patients for whom treatment with cetuximab or with panitumumab may be indicated based on a no mutation detected result. In conjunction with relevant clinical information, this information allows physicians to consider therapeutic interventions per individual drug labels and/or clinical guidelines.

**Clinical Benefit Assessment of a BRAF CDx Device** (therapy stratification or selection)

Based on the analytical and clinical performance, this IVD device achieves the clinical benefit of selecting melanoma patients whose tumours carry the BRAF V600E or V600K mutation for treatment with trametinib. In conjunction with relevant clinical information, this information allows physicians to consider therapeutic interventions per individual drug labels and/or clinical guidelines.
Figure 9.3 Clinical benefit and clinical utility concepts under the IVDR for CDx devices

The CDx-specific Intended Purpose/Use may require studying the IVD device together with the corresponding therapeutic with regards to the efficacy and safety of the therapeutic. Thus, the medical treatment and outcome of the patient need to be taken into consideration. Though clinical utility is not required for all IVDR, in this case the clinical utility of the therapeutic product (clinical outcome) is required for CDx because of their Intended Purpose. However, as for all IVDs, Health Technology Assessments or Health Economic Studies are not a requirement under IVDR. They are required for the therapeutic product.

11) What the Clinical evidence level considerations for CDx devices?

As for other IVD devices, evidence levels for analytical performance and scientific validity can be similar for various CDx devices. Similar to standalone IVD devices, the robustness and strength of the evidence should primarily relate to clinical performance and follow a risk-based approach. However, as all CDx devices are expected to be in class 'C', the strength and robustness of the clinical performance evidence for CDx is expected to be similar. Moreover, levels of available clinical evidence of CDx devices may depend of the related therapeutic, the scientific validity of the test (including similarity of molecular diagnostic and therapeutic targets), the availability of similar or equivalent CDx devices, and the benefit risk ratio of the therapeutic product, and other factors influencing the risk of patients.

12) How much data is sufficient to demonstrate scientific validity?

As stated in Q&A on Scientific Validity, evidence is always needed to prove scientific validity. In the specific case of a CDx device, the evidence for the scientific validity of the product should include expression of the associated therapeutic product’s clinical performance in the CDx-stratified or selected patient population, such as positive results of an interaction analysis of outcome measures that demonstrate the ability of the CDx device to stratify or select the therapeutic product.
What are the sources for clinical performance data?

Based on the Intended Purpose/Use of therapy stratification, CDx devices always require clinical performance data (omission cannot be justified). Specifically, they require evidence demonstrating that the CDx can successfully stratify or select the patients into responders or likely non-responders to the therapy in question. Demonstration of the clinical performance of a CDx device (i.e. the ability to select or stratify a therapeutic in support of the Intended Use) can be based on the following:

- Clinical performance studies that may include clinical outcomes (expression of therapeutic benefit and/or safety in IVD stratified or selected group)
- Concordance analysis between CDx and a comparative/predicate device, supported with statistical analysis of the therapeutic effect in the population defined by the CDx
- Real-world evidence generated using the CDx

As stated earlier, the Intended Purpose/Use of the IVD devices drives the clinical performance indicator. Some examples for CDx devices are shown in the Table 9.4 below.

Table 9.3 Examples of CDx IVD devices along with Intended Purpose and possible clinical performance

<table>
<thead>
<tr>
<th>IVD CDx Device</th>
<th>Function / Intended Purpose / Intended Use</th>
<th>Clinical Performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>HER2</td>
<td>Therapy stratification: aid in the assessment of breast and gastric cancer patients for whom Anti-HER2 therapy is considered.</td>
<td>Interaction analysis demonstrating that the CDx can successfully stratify the patients into responders or likely non-responders to Anti-HER2 therapy.</td>
</tr>
<tr>
<td>KRAS</td>
<td>Therapy stratification: aid in the identification of patients with colorectal cancer for treatment with cetuximab or panitumumab based on a no mutation detected test result.</td>
<td>Interaction analysis demonstrating that the CDx can successfully stratify the patients into responders or likely non-responders to cetuximab or panitumumab therapy.</td>
</tr>
<tr>
<td>BRAF</td>
<td>Therapy selection: aid in selecting melanoma patients whose tumours carry the BRAF V600E or V600K mutation for treatment with trametinib Therapy selection</td>
<td>Expression of the drug performance in the population defined by the CDx.</td>
</tr>
</tbody>
</table>

Please note that this table does not provide a comprehensive or prescriptive selection of Intended Purpose and clinical performance options.
14) What is a Follow-On CDx?

A follow-on CDx is a companion diagnostic product. Specifically, a follow-on CDx is an *in vitro* CDx device that seeks the same therapeutic indication in its intended use as in the intended use of the original CDx device. To support the identical therapeutic indication as the original CDx, the safety and effectiveness of follow-on CDx and original CDx should be comparable and therefore meet pre-defined equivalence criteria (see also Chapter 8 on Equivalence & Similarity).

The manufacturer of a follow-on CDx device might not have a therapeutic partner to conduct a new clinical trial or lack the patient samples from the original clinical trial where the original CDx and therapeutic product were evaluated. As such, an external comparison study is conducted to assess the concordance between the original and the follow-on device. The therapeutic efficacy in the intended use population should be comparable between the follow-on and comparator companion diagnostic devices.

15) What is a Follow-On CDx concordance study?

This term refers to a comparison study to assess the concordance between the original CDx and the follow-on CDx device. To support the identical therapeutic indication, the safety and effectiveness of the comparator and follow-on CDx should be comparable and meet predefined equivalence criteria.

Relying on a simple method comparison study between the original approved CDx and its follow-on CDx to assess comparability between these two devices is generally not acceptable for approval, because it is unknown how different levels of analytical comparability between the two CDx would translate into clinical performance of the follow-on CDx. Therefore, the regulatory review of the follow-on CDx generally should also include some type of assessment of clinical performance to ensure that use of the follow-on CDx would not alter the established therapeutic efficacy and safety profile. As stated above (Q15), an external comparison study using a dedicated design and methodology may be considered to assess the concordance between the original and the follow-on device. Note: In the absence of any EU specific regulatory guidelines on what is required for a follow-on CDx concordance study, recommendations included here relating to clinical performance have been derived from FDA published literature.
References:

1. Regulation EU 2017/ 746 of the European parliament and of the council of April 5, 2017 on in-vitro diagnostic medical devices

2. Jorga A, Holt DW, Johnston A. Therapeutic drug monitoring of cyclosporine


4. Enrichment Strategies for Clinical Trials to Support Determination of Effectiveness of Human Drugs and Biological Products. Center for Drug Evaluation and Research (CDER) and Center for Biologics Evaluation and Research (CBER), March 2019, Guidance for Industry

5. Exploratory IND Studies; Guidance for Industry, Investigators, and Reviewers. Food and Drug Administration, Center for Drug Evaluation and Research (CDER), January 2006 Pharmacology/ Toxicology


7. GHTF/ GHTF/SG5/N8:2012 Clinical Performance Studies for In Vitro Diagnostic Medical Devices


CHAPTER 10 – Near-Patient Testing

Purpose of this Q&A
This Q&A document is intended to assist in understanding and fulfilling the obligations contained in the In vitro Diagnostic Medical Devices Regulation (EU) 2017/746 (IVDR) relating to clinical evidence requirements for devices for near-patient testing (NPT).

I) Definition of NPT

1) How is NPT defined?
The IVDR defines a device for near-patient testing as follows:
Article 2 (6) ‘device for near-patient testing’ means any device that is not intended for self-testing but is intended to perform testing outside a laboratory environment, generally near to, or at the side of, the patient by a health professional.

2) How does POC differ from NPT?
Point of care testing (POC or POCT) is a term in the IVD industry, referring to smaller devices used by healthcare professionals and employed near the patient.

As of today, POCT is not defined in any regulation that addresses the provision of devices to the market, but rather by standards or guidelines that target quality practices in laboratories.

EN ISO 22870:2016 (1) provides one definition for POCT and NPT. It defines testing that is performed near or at the side of a patient with the result leading to possible change in the care of the patient, suggesting that both terms can be used interchangeably. This standard is addressed to facilities working with such devices and is foreseen to be used in conjunction with EN ISO 15189 (2) and has no direct impact on IVD manufacturers.

With IVDR, the term NPT is introduced into a regulation. IVDR distinguishes in its definition of NPT only between the different environments of use, not between different health professional users.

However, IVDR demands that NPTs are accompanied by the instructions where the manufacturer should make clear the level of training, qualifications and/or experience required by the user.

Therefore, during development and validation testing, manufacturers need to decide on the environments in which the product is intended to be used as well as the intended users. Based on this decision, the manufacturer will aim to fulfill the NPT requirements or not – if, for example, the product will be used only in laboratory environment.

From the manufacturer’s point of view, both terms NPT and POC can be seen as synonyms considering the requirements for NPTs coming from ISO Standards, as applicable, for design input requirements.
3) Within the European Union, what does NPT mean, how is this different from US CLIA waived tests?

In Europe, an NPT must only be operated by a healthcare professional, whereas in the US, CLIA guidance allows the use of POC tests by either trained or untrained operators. Trained operators may include clinical laboratory professionals, whereas untrained users are nurses, medical assistants, or office assistant type staff.

4) Which are the main standards specific to point of care testing?


b. EN 13612:2002 Performance Evaluation for IVD medical devices including Self-Test – Not updated to reflect the IVDR.

Three Standards regarding end user requirements to setup and run a POC/NPT Testing service:

c. ISO 15189:2012 – Medical Laboratories. Requirements for Quality and competence – this standard can be used by medical laboratories in developing their quality management systems and assessing their own competence. It also touches upon POCT provision as part of a laboratory service. The associated ISO 22870 goes further in stating the requirements to establish POCT provision (under laboratory supervision) and should be read alongside ISO 15189. These two standards are increasingly being used for accreditation of laboratory and laboratory supervised POCT services, although alternative national requirements exist in many countries.

d. ISO 22870:2016 Point of Care Testing (POCT). Requirements for quality and competence.


f. ISO/IEEE 11073 Health informatics — Point-of-care medical device communication series

At this time, unlike for medical devices, and IVDs for self-testing, there are currently no NPT specific standards which take into account the specific design requirements and the working environment that NPT equipment can be used in. Current standards are focused on IVD use in the laboratory setting. Companies may wish to take insight from these other standards which have already identified a number of critical factors associated with NPT settings (home, ambulance, air ambulance).

g. ISO 15197:2013 In vitro diagnostic test systems — Requirements for blood-glucose monitoring systems for self-testing in managing diabetes mellitus.

h. ISO 17593:2007 Clinical laboratory testing and in vitro medical devices — Requirements for in vitro monitoring systems for self-testing of oral anticoagulant therapy.

i. ISO 18113-5:2009 In vitro diagnostic medical devices — Information supplied by the manufacturer (labelling) — Part 5: In vitro diagnostic instruments for self-testing. This standard is not specific to the EU but is widely accepted as ‘State of the Art’.

j. CLSI
- POCT series – Mainly guidance for end users in the USA. It includes widely accepted industry standards such as POCT-1-A2 POCT instrument interface standard which replaced the previous ASTM standard.
- EP series for performance evaluation – aimed at both industry and end user verification.
- GP series including GP42 7th Ed. on Capillary Sampling.
k. FDA Guidance

- Clinical Laboratory Improvement Amendments (CLIA)
- Blood Glucose Monitoring Test Systems for Prescription Point-of-Care Use
- Self-Monitoring Blood Glucose Test Systems for Over-the-Counter Use

I. MedTech Europe guidance on Annex I of IVDR (note: document only available to MedTech Europe members)

II) NPT user definition & training

5) How is the NPT user defined, how is the user qualified? And how is the profile different from a trained lab technician?

According to IVDR, the user of a NPT is a healthcare professional. The criteria and qualifications for healthcare professional in the near patient setting will likely come from local and member state requirements and regulations and may or may not include laboratory training. Requirements for a trained laboratory technician will also likely come from local and member state requirements but do include laboratory training. Moreover, ISO 15189 requires that laboratory personnel must be trained in the following areas with a periodic review of their skills to ensure their skills remain effective:

- the quality management system
- assigned work processes and procedures
- the applicable laboratory information system
- health and safety, including the prevention or containment of the effects of adverse incidents
- ethics
- confidentiality of patient information

Other relevant definitions from ISO 18113-1 (3) are:

3.23 healthcare provider - individual authorized to deliver health services to a patient
EXAMPLES Physician, nurse, ambulance attendant, dentist, diabetes educator, laboratory technician, medical assistant, medical specialist, respiratory care practitioner.

3.56 professional use - designation that an IVD medical device is intended for personnel who are qualified to perform IVD examinations through special education and training

6) How can the manufacturer best instruct on appropriate specimen collection and testing, taking into consideration the educational/training level of the NPT user?

According to IVDR, the user of an NPT should be a healthcare professional. It can be assumed that the healthcare professional user has some level of education or training which equips them to work in this field. Therefore, the manufacturer must determine who is appropriate target user for their NPT and write instructions for specimen collection and testing accordingly.
7) What training on the device could be allowed, if any?

According to ISO 22870:2016, the laboratory director or another qualified person are responsible for appointing the person responsible for training and competency assessment. That being said, if the manufacturer wants to provide training materials, it is likely that this will be helpful to the person in charge of training.

From training, the user must attain the appropriate knowledge and skill requirements to understand the appropriate use of the device, including, where applicable:

- a specimen collection,
- its clinical utility and limitations,
- expertise in the analytical procedure,
- reagent storage,
- quality control and quality assurance,
- technical limitations of the device,
- response to results that fall outside of predefined limits,
- infection control practices, and
- correct documentation and maintenance of the results.

At a minimum, the user can be directed to read the instructions for use, but again, this will be at the discretion of the person responsible for training in the lab.

8) Is e-training sufficient in those situations where training is needed and allowed?

From MTE guidance on changes under IVDR which impact labelling: “According to the definition of a device for near-patient testing, the user of the device is a healthcare professional (ref. IVDR Art. 2(6)). This excludes laypersons and it can be assumed that the healthcare professional user has some level of education or training which equips them to work in this field.”

Given the lack of standardisation in qualifications throughout Europe and the rest of the world, it may be challenging to cite a degree level. e.g., the UK and Germany take different approaches to education in nursing.

At a minimum, if no specific training is needed, the user may be directed to read the instructions for use. e.g., a rapid test intended to give a qualitative result/diagnosis for HIV is designed to be used in the field by a local healthcare worker who is not required to have specific training or qualifications; they should be guided to read the instructions for use before administering the test.

If some specific knowledge or training is required then this should be specified, e.g., the user needs to know how to use specific equipment such as a centrifuge or be qualified to take blood in order to use the device. The instructions for use may also indicate that specific training in accordance with the manufacturer’s instructions for use is required. For example: a device intended for testing of cardiac markers in an emergency room will require the user to have specific training to use that device.

Finally, based on the manufacturer’s risk management and the device intended purpose, it may be appropriate to note that results from use of the device must go to through a physician or that they must be sent to a clinical laboratory for further analysis.
Local requirements for training and access to a facility where questions can be asked and answered in an interactive manner, should be considered.

III) NPT testing location/ environment

9) In the EU, what defines a Laboratory Environment? Is a GP Laboratory an NPT Environment?

IVDR defines devices for near-patient testing as any devices which are intended to perform testing outside a laboratory environment, generally near to, or at the side of, the patient by a healthcare professional. Outside of the laboratory environment should be understood as outside of an accredited laboratory (based on national provisions), this could be an intensive care unit, emergency department or primary care settings, such as a GPs office (4). Testing is performed by clinical staff (physicians, nurses), who are usually not laboratory trained (5). Additionally, it should be noted that unlike the central labs, the GP’s laboratory may not have sophisticated or automated equipment, and hence such GP laboratories should be considered as NPT environments.

10) What other standards / guidance can be used to help define testing locations of NPT under IVDR?

- MHRA “Management and use of IVD point of care test devices” 2013
- Point of care testing in primary care in the Netherlands document
- The state of point-of-care testing: a european perspective A Larsson et al https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4389002/
- ISO/TS 22583:2019 “Circumstances where POCT testing can occur include but are not limited to hospitals, medical practices, pharmacies, paramedics, long-term care facilities, outreach clinics in remote and rural settings, in emergency and natural disasters and community settings such as law enforcement, workplace health and safety, sporting facilities, academia, the military and public areas such as shopping centres.”
- IMDRF GRRP WG/N47 FINAL: 2018 “Near-patient testing: testing that is performed near a patient and outside of centralized laboratory testing facilities”
- EU working document on COVID testing kit performance “…in terms of location of testing, devices can be either laboratory-based or near-patient, also termed point-of-care, i.e. performed near a patient and outside of laboratory testing facilities. In the EU, near-patient tests are intended to be used only by a healthcare professional.”

IV) NPT labelling requirements

The IVDR provides new labelling requirements for NPTs. These often mirror the requirements for self-tests.

- The label of the device needs to indicate if the device is intended for near-patient testing. This can be indicated by a symbol as appropriate (6);
- Language requirements for the label and instructions for use can be defined by Member States;
- In the instructions for use, the device intended purpose must include all the elements specified under Annex I, 20.4.1(c). Here the testing population must be specified along with the specimen. It is worth
noting that the intended user must also be specified in the instructions for use (if not formally as part of the intended purpose); here a broad and non-specific user group can be given, e.g., near-patient use, healthcare professionals, provided there is sufficient evidence to support their inclusion;

- The medium, format, content, legibility and location of the label and instructions for use must be appropriate to the device, its intended use and the technical knowledge, experience, education or training of the intended user(s) (ref. Annex I, 20.1 (a)). For devices intended for near-patient testing, the information given should be appropriate to the training of the intended user and the experience needed to use the device as intended (also see Annex I.19.1).

- The instructions for use cannot be provided solely in electronic format where they are for near-patient testing (Annex I Chapter 3 20.1 (f)). Furthermore, there is a derogation that when supplying multiple devices intended for professional use within the laboratory environment to a single user and/or location, a single IFU may be provided by agreement with the user. This is specifically not the case for NPTs, meaning that instructions for use must always accompany each device. However, where multiple NPTs are provided to a single user or location, e.g. 25 rapid tests, the manufacturer, based on risk-management assessment and if duly justified, could provide a full copy of the instructions for use and 24 abbreviated operating manuals (also see Annex I 20.1d). In this case, the manufacturer should still be able to provide additional copies of the full instructions for use upon request free of charge.

V) NPT performance indicators

11) Is the performance standard different for “near patient” tests than “laboratory tests”? Does this depend on the analyte?

No, regardless of the testing location, tests must meet minimum requirements, which are dependent on associated guidelines and common specifications where applicable.

The performance criteria should support the stated intended purpose. For example, based on a ‘screening’ intended use confirmatory testing might be needed as a follow-up.

Also see chapters of this eBook: ‘state of the art in medicine’ and ‘analytical and clinical performance indicators’ under IVD Regulation 2017/746.

12) Can the same Product be used in both NPT and Laboratory Environments and have one Conformity Assessment?

Yes. Conformity should be assessed in its own right (Annex VIII Rule 4b).

One device can have a dual intended purpose. In this case, the device would be intended for use in different environments, both in the laboratory environment and by a healthcare professional outside of the laboratory environment. One conformity assessment is possible: the notified body will need to cover both the general device requirements as well as ‘additional’ requirements which relate to the different environments of use including NPTs. The requirements relating to NPTs are specified under IVDR Annex I:

- Section 19.2 provides requirements for NPTs
- Section 20 provides requirements for labelling. The labelling provided will need to be appropriate to both user environments. There are further specific requirements for NPTs.
In addition to the conformity assessment requirements for the class B or C device, the device will need to follow the procedures for technical documentation assessment set out in Section 5.1 of Annex IX.

13) Is the Conformity Assessment Route of Class A NPT product the same as for higher risk classes? (Combination of class A analyzer with class B/C/D strips/reagents etc.)

No. All class A devices follow the ‘self-declaration’ route laid out under Article 48(10).

The class A device intended for near-patient testing, does not require a notified body to conduct conformity assessment (unless sterility is claimed) nor does it need to follow the procedures for technical documentation assessment set out in Section 5.1 of Annex IX.

In general, instruments are expected to be class A (unless the instrument has an independent measuring function which does not use any additional reagents, e.g., instruments measuring blood gases or glucose via its sensors). Due to their interdependence, the notified body will assess the performance of the reagent on the instrument as part of the conformity assessment of the reagent. The manufacturer will be expected to provide evidence to support the use in combination claim between all devices used in combination (e.g., analyser and the software driving and influencing it, reagents, calibrators, controls, buffer/washing solutions, etc).

(Refer to MDCG 2020-16 Guidance for Classification rules and MDCG 2019-11 Software guidance)

14) How do the Instructions for Use and Intended Purpose requirements for NPTs translate to clinical performance studies? Specifically, will manufacturers have to do multiple clinical performance studies for different testing environments / locations, testing populations, and intended users, respectively?

The testing environment / location, testing population, and intended users are features that shall be included in the instructions for use and intended purpose/use for NPTs (IVDR Annex I, Chapter II, Section 9.4 (b), Chapter III, Section 20.4.1, (c) (vii), (e), respectively).

For qualification of users of the NPTs and streamlining of user skills and trainings, users of NPTs could be divided into two broad categories / groups:

- Users in routine professional care environments: Here, the training and user skills required are lower and this group includes users in hospital wards, clinics, general practitioners’ offices, pharmacies, retirement homes, rehab clinics etc.

- Users in critical care environments: Here, the training and user skills required are higher and this group includes users in intensive care units, emergency units, urgent care centers, operating rooms, ambulances, etc.

This grouping is meant exclusively for qualification of users.
For testing populations and testing locations, however, the performance indicators from one testing location within the same category cannot be grouped with or inferred from/transferred to another testing location in the same category. In other words, data from one routine professional care location (e.g., GP) cannot be grouped with or inferred from/transferred to other routine professional care locations (e.g., retirement home), without appropriate justification. Similarly, data from one critical care location (e.g., emergency room) cannot be grouped with or inferred from/transferred to other critical care locations (e.g., operating room). This is particularly true for analytes where performance indicators are already known to differ substantially between testing populations or among testing locations (e.g., troponins).

Thus, for each testing population and testing location claimed, the corresponding performance data will need to be provided, unless duly justified, for example, in cases where it can be demonstrated that the skill level of the operator and the characteristics of the target of the test are substantially similar in the different NPT environments. It is conceivable that manufacturers launch NPTs with narrow and precise intended purpose claims based on clinical evidence generated in one testing population and location. Post-launch studies including real world evidence could also help to expand intended purpose claims to additional testing populations and locations.

15) Does Clinical testing have to take place solely in the anticipated “environment of use” if so, to what other setting or user group is the test clinically tested in this environment compared in order to determine performance claims? Can claims from one testing environment be transferred to another?

For each testing location or environment of use claimed, the corresponding performance data (analytical and clinical) will need to be provided. If equivalence between environments of use is established (through clinical performance studies and/or published literature), performance data, and therefore claims, can be transferred.

For analytical and clinical performance studies, a lab-based assay with similar intended uses can be used as a comparator, and data demonstrating operation by the intended users also should generated.

16) What time-effective and cost-effective studies are required to provide suitable evidence for NPT devices?

The IVDR does not mention or define clinical utility.

Cost-effectiveness and time-effectiveness are related to clinical adoption and reimbursement, they are not required by IVDR for CE-marking.

See page 22 of this eBook: ----“In line with the IVDR, a manufacturer is expected to demonstrate clinical evidence, which includes scientific validity, analytical performance and clinical performance, for all IVD medical devices unless any omission can be justified as not applicable. Aside from scientific validity and clinical performance, a manufacturer is not required to demonstrate any other elements of clinical utility for premarket conformity CE marking assessment purposes. See APPENDIX II for a diagrammatic representation of the manufacturers' responsibilities.” ----
“the clinical benefit focuses on the ‘accurate medical information’ output of an IVD device, in context of the intended purpose as defined by the manufacturer and in conjunction with other medical information. The clinical benefit and the corresponding clinical evidence do not include the potential benefits as a result of patient management (i.e., clinical utility).”

If samples or patients are difficult to obtain for the study, testing can be done in the manufacturer’s premises or other simulated conditions.

Other cost-effective approaches that can be considered include use of data from non-EU studies that represent the intended use and EU population, and bridging studies where changes to intended purpose increase scope.

17) What additional studies/evidence is required to differentiate between professional lab-based tests and NPTs?

An IVD is required to function in the use environment and by the user defined by the manufacturer. This functionality is required to be demonstrated in the use environment by the intended users by following the instructions for use. In addition, analytical performance studies, and in some cases clinical performance studies need to be performed.

In addition, the usability and the use environment need to be taken into consideration when creating the evaluation/ study protocols. This means also analytical performance studies, i.e., the intended users and sites needs to be considered (physician office, ambulances, hospital near patient testing, elderly homes, emergency rooms, etc.) when selecting testing sites.

When a test is intended to be used in the laboratory environment, the intended user group is laboratory professionals. Manufacturers providing the evidence may have their own product development groups that include laboratory professionals testing and verifying performance. Whether the manufacturer’s own laboratory professionals represent the intended end user group in the verification and validation group, and whether there is a necessity to perform external evaluation studies should be evaluated.

18) What are the key differences between usability and clinical performance studies for NPTs? And what does adequate usability documentation consist of?

Usability studies and testing are an important process within the product development process meant to verify the effectiveness of the design and to evaluate the ease-of-use of a product. Formative usability testing is done early in product development to help develop the product’s shape and design. The goal is to detect issues and eliminate usability problems before a product is fully developed. It is crucial to observe and understand the users’ thought processes and their actions resulting from them. The data collected during formative usability testing is observational in nature.

Summative usability testing is usually performed later in the product development process when the product is fully developed. It is often conducted when a design is reasonably complete and involves evaluating the design against quantitative goals or competitor’s products.
Summative usability testing is typically carried out as a part of performance studies of the NPT. The spectrum of possible use sites and the level of education/training of the end users should be taken into consideration when planning usability testing. Also, an NPT should be easy to use and this aspect should be considered in design and usability.

If specimens, patients or study sites are difficult to obtain, testing can be done in the manufacturer’s premises or other simulated conditions.

Harmonized standard (EN 62366:2008 Medical devices - Application of usability engineering to medical devices EN) can be used to comply with documentation requirements by regulatory authorities. The purpose of the clinical performance studies is to establish or confirm aspects of device performance, which cannot be determined by analytical performance studies, literature and/or previous experience gained by routine diagnostic testing (IVDR Annex XIII, 2.1.). Typically, clinical performance studies are studies in which diagnosis is available (through the clinical performance study or e.g., through biobank samples) and can be used to calculate different diagnostic parameters for the test in question, e.g., diagnostic sensitivity and specificity and negative and positive predictive values.

19) What reference methods are most appropriate for NPTs, US vs Europe?

A reference method is a scientifically established/recognized and standardized method for certain analytes and is selected according to the analyte in question. A comparative method is a method for a similar device on the market. The difference in the analytical performance data analysis of these two methods can be found in the different publications.

To establish traceability and trueness for a method, a reference method or reference material is required (IVDR Annex II, sec. 6.1.2.1 Accuracy of the measurement). This rule applies to all IVDs, not only NPTs. If a reference method or reference material does not exist, traceability cannot be established. In this case, comparative methods accompanied with justification of the selected method may be used to establish the required performance.

The predicate method is a term used in US submissions for FDA marketing clearance. This term refers to a similar device (or test) already cleared on the US market. Predicate device comparison includes e.g. information on similar devices and test performance. In the state-of-art and risk-benefit sections, the test meant to be cleared, is compared to the predicate device.

If the test in question has been cleared for the US market, information in the FDA database can be a useful starting point to identify potential systems to support equivalence. Method comparison to the predicate method can be utilized when establishing the state-of-art and risk-benefit. Further, the similarity table used in the predicate method could be utilized for legacy products.

20) Can participants be compensated in the EU? (recruiting patients for NPT device studies can be difficult)

Interventional specimen-taking procedures to be considered separately (differentiate between interventional study design)
Small compensation, e.g., travel expenses according to each country specific principles, lunch or coffee stamps etc., are allowed. When such study in which an ethical committee statement is needed, compensation needs to be described in the study protocol (as in all studies) and the ethics committee will make an assessment if the compensation is appropriate. This is a general principle independent from the study type in question.

21) What are the specimen types that should be included in performance studies for NPTs (leftover samples vs fresh samples vs banked samples)?

Specimen type ultimately depends on the intended purpose of the device and could include, e.g., urine or blood (venous, arterial or capillary blood) specimens. Considering the settings where NPT are deployed, and the turnaround time, fresh specimens are generally the most favourable specimen. For example, if NPT devices require the use of capillary or arterial blood, a fresh specimen should be taken for the purpose of a study. However, for devices utilising venous blood, leftover/ banked samples or specimen may be considered for clinical performance studies, provided that they are deemed suitable for the analysis, e.g., heparinised/non-coagulated blood.

The study protocol should reflect the use case laid out in the instructions for use unless an appropriate justification for any deviation is provided.

If fresh specimens are collected prospectively, the following should be considered:

a. IVDR Articles 58 A & C: where the conduct of the study involves blood sampling and additional invasive procedures - venous blood sampling is now a high risk procedure

b. ISO 20916 (7) 5.3: Design of clinical studies

22) Patient self-sampling (consider self-test requirements)

IVDR defines devices for self-testing as "any device intended by the manufacturer to be used by lay persons, including devices used for testing services offered to lay persons by means of information society services". According to the EU borderline manual (8), for a device to be considered as a self-testing device, the lay user’s action shall result directly in a test result or lay user must manipulate the collected specimen before it is dispatched to a laboratory.
References

1. EN ISO 22870:2016 Point-of-care testing (POCT) — Requirements for quality and competence

2. EN ISO 15189 Medical laboratories – Requirements for quality and competence

3. ISO 18113-1 In vitro diagnostic medical devices — Information supplied by the manufacturer (labelling) — Part 1: Terms, definitions and general requirements


CHAPTER 11 – Use of Clinical Data from Outside the European Union

It is common practice today for clinical data coming from outside of the EU, to be used to support performance evaluation claims for devices on the EU market‡‡. For example, a multi-country performance study may have been run to develop data for a device that is intended to be placed on the market in a range of jurisdictions including the EU. Or a device may be placed on the market of a non-EU country before it is introduced onto the EU market. In the latter case, the evidence collected to support the device will often be based on studies conducted outside of the EU. Depending on the intended purpose of the device, this data may be sufficient and can be justified without further studies being necessary. In other cases, a bridging study may be needed. This chapter discusses selected questions regarding the use of third country§§§ clinical data for the In Vitro Diagnostic Medical Devices Regulation EU 2017/746 (IVDR).

There are incentives for both industry and authorities to allow clinical data gathered outside of the EU to be used for EU clinical data package:

1. Minimise duplication of performance studies,
2. Make new diagnostic tools accessible to patients faster,
3. Avoid wasting development resources.

The use of clinical data from outside the EU can only be made if that “data package” meets the local regulatory requirements while however fulfilling EU ethical standards.

1) Does the IVDR permit the use of clinical data collected outside of the EU?

Yes, the IVDR allows the use of clinical data collected outside of the EU.

For a list of references in the IVDR, see APPENDIX 12.1.

2) What is meant by the target population?

Under the IVDR, where applicable, the testing or target population is required to be specified as part of the device’s intended purpose under IVDR Annex I. For example, a study design may include methods for determining the assay cut-off which could include considerations around the target population. For CE-marking and in line with the product claims, the subjects of the performance study must be a representative sample of the target/testing population of the final CE-marked device.

Under the IVD Directive, Common Technical Specifications [1] prescribe the use of an equivalent European population to conduct a performance evaluation study for an IVDD Annex II List A device:

“3.1.6 Performance evaluations shall be performed on a population equivalent to the European population.”

‡‡ For the purpose of this discussion the term ‘EU market’ is defined to be countries of the European Union, Switzerland and EEA countries.
§§§ Third country here means a country that is not in the European Union, Switzerland or EEA.
ISO 20916 [2] provides considerations for how the clinical performance studies can be designed, this includes consideration of the target population. Examples of target population include age, race, gender, geography, clinical condition, treatment status (reference ISO 20916:2019 - 5.3 Design of the clinical performance study 5.3 C 2) [AR1] [AR2]

Considering the element of geography, the manufacturer should check if clinical guidelines published by European medical societies need to be taken into account when using the data. Consequently, if there is an impact, an adjustment or bridging study needs to be considered.

3) What can we do with established (approved under IVDD) devices versus devices which will develop evidence entirely under the new performance evaluation procedures of the IVDR?

All devices on the market today will already have CE marking under the IVD Directive and will have followed the analytical performance requirements of the Directive. Some level of clinical performance [SR3] will have been established in this regard, e.g., for diagnostic sensitivity and specificity. If needed, refer to the chapter 4 “Clinical Evidence Levels”.

A manufacturer can conduct studies under the IVD Directive and use the data also to demonstrate clinical evidence under the IVD Regulation. This is permitted until 26 May 2022, when the IVD Directive ceases to be applicable: the fact that a study is designed under the Directive or Regulation does not prevent the data from being used to meet clinical evidence requirements. The Regulation accepts many sources of data aside from clinical performance studies. Even if the studies were conducted outside of the EU, the transition from the IVDD to the IVDR does not per se require an amendment to the study protocol as long as the safety and performance of those devices regarding the European population can be demonstrated. So-called ‘legacy’ data are not excluded, and a retrospective amendment of the study protocol is not necessary. Data collected before the application of the IVDR, either within the manufacturing facility or published by scientists, collected considering the ethical and standard criteria should also be considered. Also see the chapter 5 on “How to demonstrate evidence gained from published routine diagnostic testing”.

For devices that have no CE-marking under the IVDD (“novel devices”), it is recommended to follow the analytical and clinical performance study requirements under the IVDR including design and documentation of the study to the extent possible. It should be noted that certain provisions set out in the IVDR for performance studies as per Article 58, such as notification and/or authorisation via EUDAMED are only applicable to studies conducted in the EU Member States and the EFTA countries.

In the case where a performance study is needed, the use of data from outside of the EU is permitted as long as the study design and documentation requirements are fulfilled, provided that the study population is comparable to the intended European testing population of the device. Rationale for the study design should be provided as part of the benefit-risk determination under the clinical performance study protocol; this will be reviewed as part of the conformity assessment process by the notified body.

4) What are some ethnic factors which should be considered when using clinical data generated outside the EU?

Depending on the device in question, it may be necessary to consider genetic or physiologic factors (intrinsic factors), cultural and environmental characteristics (extrinsic factors) when assessing the value and completeness of using clinical data generated outside the EU.
Genetic or physiologic factors:

To consider: is the analyte the same across populations in different geographies? Meaning, can data collected in one population be transferred to a different geographical region?

Below follow examples of analytes illustrating the use of clinical data generated outside of the EU to support the intended clinical benefit of the test:

- **Alzheimer’s disease as detected by Abeta**
  
The cut-off limit (Abeta 42 over Tau) was established in a North European population, and later verified in the United States. These populations represent different ethnic make-ups.

Consideration: Is Abeta equally presented in the North European versus US population?

Published literature shows that Abeta is equally presented in both populations and clinical data from these populations is transferable. Also, medical practice in both regions is comparable. Furthermore, appropriate patients in the appropriate settings are not easily obtained, further adding justification for using non-EU cohorts.

- **Cytokeratin-19 for detection of cancer cells**
  
The clinical cut-off of Cytokeratin-19 expression was established in a Japanese population.

Consideration: is this clinical cut-off established in Japan also applicable for the EU population?

Published studies demonstrate that the expression level of this gene in tumour cells is identical among different ethnical populations. Therefore, the cut-off value for this gene is applicable in the EU population. Moreover, the study performed in Japan is in line with the EU requirements and clinical practice between the two regions is comparable.

**HBV genotype distribution**

Consideration: Is the below clinical performance study conducted outside of the EU also applicable for the EU population?

Published literature demonstrates a wide distribution of HBV genotypes around the world, underscoring the need to ensure that clinical performance studies address the HBV genotype coverage specific to the EU population.

Analytical performance studies shall demonstrate that the device can detect all HBV genotypes (A-J) if the device’s intended purpose claims to detect all genotypes.

Clinical performance studies were conducted outside of the EU in geographies with similar but not identical prevalence of HBV genotypes. Combined with analytical performance, literature reviews (showing common genotypes between EU and outside of the EU) as well as peer reviewed published literature demonstrating clinical performance using the device from various geographical locations that have genotype common to EU, provided support for the device’s intended use. See Figure 11.1 for the distribution of HBV genotypes by country.
Cultural and environmental characteristics:

To consider: examples of extrinsic factors include social and cultural aspects of a region such as medical practice, diet; and particularly important to the reliance on studies from a different region, practices in clinical trial design and conduct. Although it is the manufacturer’s responsibility to ensure the clinical study is designed and conducted according to EU requirements, it is recognised that study sites with global variation may demonstrate unconscious bias to the interpretation of the clinical study protocol provided by the manufacturer, conducting the study according to local cultural/environmental norms. This could lead to the practical application of the study protocol/training as provided by the manufacturer to be somewhat different to the original intent.

Medical practice

Medical practice in different regions needs to be considered in an early phase when the clinical performance study protocol is designed. Co-medication and invasive procedures might differ across regions, particularly in the critical care setting. When these aspects of the clinical performance protocol are defined, proactively researching the local clinical practice guidelines can reduce unnecessary exclusion of patients once the study is running, and result in a more reliable estimate of the number of enrolled study patients.

Definition of clinical conditions might also be a complicating and confounding factor introducing bias in the clinical data. Even though well defined in study protocols, some heterogeneous conditions might be defined differently around the world. Also, the treatment of these conditions (including medication) might vary and be influenced by historic medical practice.
Patients available for clinical performance studies might also represent different severity and clinical stages. This can be due to lack of standardisation, or different scales or scoring practices.

**Definition of the clinical cut-off might differ from region to region.**

Clinical cut-off might be defined differently in different regions. The underlying reason for this difference might be as simple as different units are preferred (e.g., see Cholesterol below). In some countries the cut-offs are influenced by limitations to the medical system, pushing out cut-offs to include only more advanced clinical conditions.

Example: Cut-off for total Cholesterol in the EU vs. the US

The cut-off definition for desirable and borderline high Cholesterol differs slightly in the EU vs. the US. This difference is driven by the units preferred in the two regions. The most suitable cut-off (number) is used to define the clinical condition, based on mmol/L in the EU, or mg/dL in the US. This results in different cut-offs based on units:

Total Cholesterol (desirable/borderline high)

- **200 mg/dL** (5.18 mmol/L) National Cholesterol Education Program (NCEP), USA
- **5 mmol/L** (190 mg/dL) European Society of Cardiology (ESC) and the European Atherosclerosis Society (EAS)

**Distribution of eligible subjects**

Prevalence of the disease, mutation, or infections might force a sponsor to search outside of the EU to find suitable patients.

Example: Because of extensive HPV vaccination in the EU, this results in a low prevalence of women suffering from cervical cancer. Therefore, HPV patients may need to be sourced outside the EU.

**Dietary differences**

Geographic differences in nutritional habits can impact IVD testing. An example of this was the increased use of Biotin as a nutritional supplement, which had a negative impact on the performance of IVD tests using biotin-streptavidin binding technology. Moreover, other interfering substances should be considered.
APPENDIX 11.1 – In Vitro Diagnostic Medical Devices Regulation EU 2017/746 (IVDR) – relevant references

Article 56 Performance evaluation and clinical evidence

1. The manufacturer shall specify and justify the level of the clinical evidence necessary to demonstrate conformity with the relevant general safety and performance requirements. That level of clinical evidence shall be appropriate in view of the characteristics of the device and its intended purpose.

To that end, manufacturers shall plan, conduct and document a performance evaluation in accordance with this Article and with Part A of Annex XIII.

Annex I CHAPTER II

REQUIREMENTS REGARDING PERFORMANCE, DESIGN AND MANUFACTURE

9. Performance characteristics

9.1. Devices shall be designed and manufactured in such a way that they are suitable for the purposes referred to in point (2) of Article 2, as specified by the manufacturer, and suitable with regard to the performance they are intended to achieve, taking account of the generally acknowledged state of the art. They shall achieve the performances, as stated by the manufacturer and in particular, where applicable:

(a) the analytical performance, such as, analytical sensitivity, analytical specificity, trueness (bias), precision (repeatability and reproducibility), accuracy (resulting from trueness and precision), limits of detection and quantitation, measuring range, linearity, cut-off, including determination of appropriate criteria for specimen collection and handling and control of known relevant endogenous and exogenous interference, cross-reactions; and

(b) the clinical performance, such as diagnostic sensitivity, diagnostic specificity, positive predictive value, negative predictive value, likelihood ratio, expected values in normal and affected populations.

20.4. Information in the instructions for use

20.4.1. The instructions for use shall contain all of the following particulars:

(a) the name or trade name of the device;

(b) the details strictly necessary for the user to uniquely identify the device;

(c) the device’s intended purpose:

(i) what is detected and/or measured;
(ii) its function (e.g., screening, monitoring, diagnosis or aid to diagnosis, prognosis, prediction, companion diagnostic);

(iii) the specific information that is intended to be provided in the context of:

— a physiological or pathological state;

— congenital physical or mental impairments;

— the predisposition to a medical condition or a disease;

— the determination of the safety and compatibility with potential recipients;

— the prediction of treatment response or reactions;

— the definition or monitoring of therapeutic measures;

(iv) whether it is automated or not;

(v) whether it is qualitative, semi-quantitative or quantitative;

(vi) the type of specimen(s) required;

(vii) where applicable, the testing population; and

(viii) for companion diagnostics, the International Non-proprietary Name (INN) of the associated medicinal product for which it is a companion test.

Annex II:

“6.1.2.6. Definition of assay cut-off

This Section shall provide a summary of analytical data with a description of the study design including methods for determining the assay cut-off, such as:

(a) the population(s) studied: demographics, selection, inclusion and exclusion criteria, number of individuals included;

(b) method or mode of characterisation of specimens; and

(c) statistical methods such as Receiver Operator Characteristic (ROC) to generate results and if applicable, define grey-zone/equivocal zone.”
Annex XIII

2.3.2. Clinical Performance Study Plan

(m) information on the performance study population: specifications of the subjects, selection criteria, size of performance study population, representativity of target population and, if applicable, information on vulnerable subjects involved, such as children, pregnant women, immuno-compromised or elderly subjects;
References


2. ISO 20916:2019 In vitro diagnostic medical devices — Clinical performance studies using specimens from human subjects — Good study practice

CHAPTER 12 – Documentation of Performance Evaluation requirements

Annex XIII of the IVDR sets out the respective requirements for the plans and reports on Performance Evaluation and Post-Market Performance Follow up (PMPF). This document describes the flow of plans and reports (Figure 12.1), the required frequency for updating the reports, and seeks to clarify elements of the wording.

Figure 12.1 Flow of Plans and Reports for Performance Evaluation

The flowchart describes the relevant information that is required in the design control process. How this is documented and indexed will depend on the individual company documentation system.

Although the IVDR does not explicitly mention analytical study documentation, Annex XIII, Section 3 refers to studies other than clinical performance studies which shall be documented in the same way. Analytical performance study documentation is included in the performance evaluation plan and is therefore addressed in a similar manner as the clinical performance study plan and report.

The performance evaluation and its documentation shall be updated throughout the lifecycle of the device concerned with data obtained from the manufacturer’s PMPF plan in accordance with Part B of Annex XIII and the post-market surveillance plan referred to in Article 79.
Table 12.1 below provides an overview of required frequency of different documents depending on the device class.

### Table 12.1 Required frequency of updates of reports

<table>
<thead>
<tr>
<th>Device Class</th>
<th>Document</th>
<th>Required frequency of update</th>
<th>Article</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Performance evaluation and associated documentation</td>
<td>Throughout the lifecycle of the device. From implementation of the manufacturer’s PMPF plan in accordance with Part B of Annex XIII and the post-market surveillance plan referred to in Article 79</td>
<td>Article 56, section 6</td>
</tr>
<tr>
<td>A &amp; B</td>
<td>Post Market Surveillance Report</td>
<td>When necessary and made available to the notified body and the competent authority upon request</td>
<td>Article 80</td>
</tr>
<tr>
<td>C &amp; D</td>
<td>Periodic Safety Update Report (PSUR)</td>
<td>At least annually</td>
<td>Article 81, section 1</td>
</tr>
<tr>
<td></td>
<td>Performance Evaluation Report</td>
<td>As necessary and at least annually</td>
<td>Article 56, section 6</td>
</tr>
<tr>
<td></td>
<td>Summary of Safety and Performance (SSP)</td>
<td>As soon as possible, where necessary</td>
<td>Article 56, section 6</td>
</tr>
</tbody>
</table>

1) **What level of performance evaluation documentation will Notified Bodies expect for established products?**

The same information will be required for established products as other products. For established products it is reasonable to refer to existing documents instead of generating a new performance evaluation plan.

2) **Annex XIII, section 1.1 states ‘As a general rule, the performance evaluation plan shall include at least’. What is meant by ‘As a general rule’?**

The text states ‘As a general rule’, indicating that some points may be excluded as long as a justification is given.

3) **Annex XIII, section 1.1, 10th indent: Why should a benefit-risk analysis be performed before a performance evaluation is started (required to be referenced as part of the plan)?**

The benefit-risk analysis according to ISO 14971² is intended to determine if the medical/clinical benefits of the intended use outweigh the overall residual risk.

4) **Annex XIII, section 2, Clinical Performance Studies: Where can I find additional information on how to conduct clinical performance studies?**

See the new ISO 20916³ for additional information.
5) Annex XIII, section 2.1. What are the criteria that determine whether a clinical performance study is needed?

When clinical performance is applicable, then in the absence of sufficient clinical performance data, a clinical performance study shall be performed to supplement the available clinical performance data from other sources, such as literature and experience from routine diagnostic testing.

6) Annex XIII, section 2.3.2(a), single identification number of the clinical performance study: Does this requirement apply to all studies?

No, this requirement only applies to Annex XIV studies as these cover interventional performance studies and certain other performance studies as referred to in Article 58 (1) and (2).

7) Annex XIII, section 2.3.2(h): Where should the benefit-risk analysis be documented?

The benefit-risk analysis will be a part of the risk management report and should be referred to in the Performance Evaluation Plan (PEP) and Performance Evaluation Report (PER). PEP/R can refer to the risk management report according to ISO 14971.

8) Annex XIII, section 2.3.2 (o), monitoring plan: Does this refer to data integrity and/or the monitoring of patients?

This refers to the monitoring of study conduct (e.g. follow the CPSP, integrity of data, adequate qualification of personnel conducting the study). For additional information, please consult ISO 20916.

9) Annex XIII, section 2.3.2 (p), data management: What does this refer to?

This is referring to the process of how the data will be captured and managed. Where relevant, it would be appropriate to state how the requirements of the GDPR are being met within the data management process. For additional information, please consult ISO 20916.

10) Annex XIII, section 2.3.3: Where can additional guidance be found on the structure and content of the clinical performance study report?

ISO 20916 can provide additional guidance on the conduct of a clinical performance study.

11) Annex XIII, section 3, Other Performance Studies: Is this referring to analytical performance studies? If 2.3.2 structure is used for analytical performance study plans, can all listed items be applicable?

There is no clear indication of additionally required performance studies in the Regulation. Clinical and analytical performance studies require individual reports using similar headings and structure. The level of detail may vary between analytical and clinical performance study reports. Therefore, depending on the analytical performance study, it would be reasonable to state which parts are relevant rather than listing all parts that are not relevant.
12) Do analytical and clinical performance study reports need to be signed?

Yes, both reports need to be signed by competent/authorised persons and are part of the Design Control Management System.
References:


2. ISO 14971 Medical Devices – Application of risk management to medical devices

3. ISO 20916 In vitro diagnostic medical devices – Clinical performance studies using specimens from human subjects – Good study practice

4. Regulation EU 2016/679 of the European Parliament and of the Council of 27 April 2016 on the protection of natural persons regarding the processing of personal data and on the free movement of such data (General Data Protection Regulation)
CHAPTER 13 – Summary of Safety and Performance

The Summary of Safety and Performance (SSP) is one of the requirements of the new Regulation, specific for class C and D devices, to enhance transparency and adequate access to information. It intends to provide public access to summarised data on the safety and performance of class C and class D IVD devices to all intended users – professionals and lay persons.

The present document aims at guiding manufacturers where relevant information for the different SSP requirements of Article 29 can be found in the manufacturer’s documentation. The template below offers possible sources for the SSP. It by no means replaces the EUDAMED template or mandates the format of the SSP. It is the manufacturer’s sole responsibility to document the SSP in an appropriate manner, fulfilling the requirements of Article 29 of the IVDR.

Table 13.1 Possible sources for the SSP

<table>
<thead>
<tr>
<th>Requirements based on IVDR Article 29</th>
<th>Potential regulatory sources</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Device identification and general information</strong></td>
<td></td>
</tr>
<tr>
<td>Name or trade name including any model number or version</td>
<td>&lt;Excerpt from IFU or declaration of conformity&gt;</td>
</tr>
<tr>
<td>Manufacturer (name and address)</td>
<td>&lt;Excerpt from label or declaration of conformity&gt;</td>
</tr>
<tr>
<td>Manufacturers single registration number (SRN), if available</td>
<td>&lt;Excerpt from declaration of conformity&gt;</td>
</tr>
<tr>
<td>Basic UDI-DI</td>
<td>&lt;Excerpt from declaration of conformity&gt;</td>
</tr>
<tr>
<td><strong>Intended purpose of the device</strong></td>
<td></td>
</tr>
<tr>
<td>Intended purpose and indications</td>
<td>&lt;Excerpt from IFU&gt;</td>
</tr>
<tr>
<td>Target populations</td>
<td>&lt;Excerpt from IFU&gt;</td>
</tr>
<tr>
<td>A clear specification of indications. Description of target groups shall be specified, e.g. age, gender, specific medical conditions, etc.</td>
<td></td>
</tr>
<tr>
<td>Contraindications (limitations)</td>
<td>&lt;Excerpt from IFU or clinical evidence report&gt;</td>
</tr>
<tr>
<td>Annex I, 20.1 (g)</td>
<td>Limitations (medical and technical)</td>
</tr>
<tr>
<td><strong>Device description</strong></td>
<td></td>
</tr>
<tr>
<td>Device description</td>
<td>&lt;Excerpt from IFU and summary of Technical Documentation, Annex II, 1.1, as appropriate&gt;</td>
</tr>
<tr>
<td>To include e.g. operating principles</td>
<td></td>
</tr>
<tr>
<td>Reference to previous generation(s) or variants of the device (as applicable) and a description of the differences</td>
<td>&lt;Excerpt from IFU, technical documentation (Annex II, 1.2a)&gt;</td>
</tr>
<tr>
<td>Should include e.g. differences of the operating principles (e.g. manual vs automated); any novel features</td>
<td></td>
</tr>
<tr>
<td>Description of accessories intended to be used in combination with the device (as applicable)</td>
<td>&lt;Excerpt from IFU, if exists, of the accessory, technical documentation (Annex II, 1.1.m)&gt;</td>
</tr>
<tr>
<td>Description of other devices and products intended to be used in combination with the device (as applicable)</td>
<td>&lt;Excerpt from IFU, if exists, of the other devices; technical documentation (Annex II, 1.1.m)&gt;</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>Standards Reference</td>
<td>Provide a list of applicable CS and harmonised standards. If CS exists for the device in question, provide a reference to the CS that can be found in the Declaration of Conformity. The SSP can also include the monographs of the EU Pharmacopoeia adopted in accordance with the Convention on the Elaboration of the European Pharmacopoeia, if references to those monographs have been published in the OJEU.</td>
</tr>
<tr>
<td>Harmonised standards and CS applied</td>
<td>&lt;Excerpt from Performance evaluation report including PMPF section (Annex XIII, 1.3.2.)&gt; This shall be an objective, balanced summary from the performance evaluation report that is written in a comprehensive and traceable manner, including relevant aspects of safety and performance, conclusions from benefit-risk analysis, and a statement regarding whether equivalence was used in the assessment of the conformity of the device. The summary shall be provided in appropriate terminology understandable to the respective intended user(s) of the device.</td>
</tr>
<tr>
<td>Summary of the performance evaluation and Post-Market Performance Follow-Up</td>
<td>Metrological traceability of assigned values</td>
</tr>
<tr>
<td>Users</td>
<td>User Profile</td>
</tr>
<tr>
<td></td>
<td>User Training</td>
</tr>
<tr>
<td>Device Risks Information</td>
<td>Residual risks and undesirable effects</td>
</tr>
<tr>
<td></td>
<td>Warnings and precautions</td>
</tr>
</tbody>
</table>

1) **Which sources can be used for the SSP?**

The content in this document shall be sources from the technical documentation (Annex I and Annex II), the EU Declaration of Conformity and may be identical to some parts of the instruction for use (IFU). However, this document is not intended to substitute the IFU. The present document is a summary of safety and performance, therefore all entries, especially the part on performance evaluation, shall be provided in a concise and summarised form rather than include detailed reports.

2) **Who should upload the SSP?**
The manufacturer should submit a draft SSP, as part of the application documents, to the Notified Body (NB) involved in the conformity assessment (Annex IX and X). After issuing the certificate, the NB will upload the validated SSP in EUDAMED. Before uploading the SSP, the NB will verify that all required elements are covered in the SSP and that the information provided in the draft SSP conforms with the technical documentation assessed under the conformity assessment process. Upon receiving the CE-certification and before the device can be placed on the market, the manufacturer shall verify in EUDAMED the information related to the device, including the SSP (Article 26; Annex VI, Part A, Section 2.11).

![Figure 13.1 the workflow to upload SSP](image)

3) **What is the frequency of update?**

Article 56 (6): ‘The Summary of Safety and Performance shall be updated as soon as possible, where necessary’, suggesting that it should be updated only if the manufacturer’s post-market surveillance (including PMPF) identifies any issues that will lead to a change in the technical documentation rendering the information in the SSP outdated. However, if no changes have been found, the SSP shall remain unchanged regardless of the frequency of updates to any reports that may constitute the SSP.
CHAPTER 14 – Post-Market Performance Follow-up

Post-Market Performance Follow-Up (PMPF) is a continuous process that updates the performance evaluation referred to in Article 56 and Part A of Annex XIII and shall be addressed specifically in the manufacturer’s post-market surveillance plan. When conducting PMPF, the manufacturer shall proactively collect and evaluate performance and relevant scientific data from the use of a device which bears the CE marking and is placed on the market or put into service within its intended purpose as referred to in the relevant conformity assessment procedure. The PMPF aims to confirm the safety, performance and scientific validity throughout the expected lifetime of the device, to ensure the continued acceptability of the benefit-risk ratio and to detect emerging risks on the basis of factual evidence. Figure 14.1 describes how PMPF relates to other elements of the IVDR.

Figure 14.1 Dependencies between PMPF and other IVDR elements

Post Market Performance Follow-Up (PMPF) Annex XIII – Part B

*Class A, B, C and D Devices

Dependencies between PMPF and other IVDR elements

Class C and D Devices

Only

Class C and D Devices

Annual Update

Summary of Safety and Performance Report (SSP)

Annual
Update

Periodic Summary Update Report (PSUR)

Class C and D Devices

Annual Update

Performance Evaluation Report (PER)

Class C and D Devices

Annual Update

Performance Evaluation Plan (PEP)

PMPF Triggers?

PMPF Plan

PMPF Report

Vigilance

FSCA

Trend Reporting

Periodic Summary Report (PSR)

Literature / other external data

Complaints

Risk Management System (RMS)

Annual Update

Update as soon as possible, where necessary

Post Market Surveillance (Articles 79 and 80)*

QMS

Figure 14.1 Dependencies between PMPF and other IVDR elements
1) What should be included in the PMPF and where can this information be found?

Annex XIII, part B describes the requirements for PMPF. The PMPF shall be planned and performed as deemed required by the manufacturer and as documented in the manufacturer's PMPF plan. Table 14.1 gives examples of what should be included as the general methods and procedures. The PMPF plan shall describe the specific methods and procedures, rationale for method and procedure appropriateness, and the objective and frequency/timeline. Post-market studies may be included as a specific method and procedure in the PMPF plan. References to relevant Common Specifications harmonised standards consulted and relevant PMPF guidance shall also be listed, as well as a reference to the relevant parts of the performance evaluation report referred to in the IVDR Section 1.3 of Annex XIII and to the risk management referred to in Section 3 of Annex I.

Elements potentially overlapping with the periodic safety update report (PSUR) or post-market surveillance report, such as scientific literature evaluation or complaint data, may be available through these reports.

Overall objectives of the PMPF are to:

1) Confirm the safety, performance and scientific validity of the device throughout the expected lifetime
2) Identify systematic misuse
3) Identify new safety issues;
4) Analyse benefit/risk ratio;
5) Identify new risks;
6) Identify limits to performance and, if applicable, contra-indications; and
7) If applicable, review the performance data relating to equivalent or similar devices, and the current state of the art.

In addition, any product specific objectives (e.g. sourcing of rare samples) will be included in the PMPF plan. Note: Misuse should not be confused with “Use Error”, which is defined in MEDDEV 2.12-1 (Guidelines on a medical devices vigilance system) as “Act or omission of an act, that has a different result to that intended by the manufacturer or expected by the operator of the medical device”. Use Error would be handled through the normal Post-Market Surveillance vigilance system of the manufacturer.

---

IVDR includes provisions for manufacturers around systematic misuse and reasonably foreseeable misuse. Modification of a device that is subject to the requirements of the exemption including appropriate performance study does not constitute foreseeable or systematic misuse. The modification and use of the device should be verified against the original device when used as intended by the manufacturer to demonstrate and document whether the function, performance or purpose has been altered. Modification could include using an existing device for a purpose not intended by the manufacturer, modifying a device for a new purpose, use of sample types, accessories or components or combining devices not specified by the manufacturer. Therefore, off-label use may also be a modification or manufacture and the exemption requirements would apply. An example of misuse is using HIV monitoring assays for screening of blood bags. Systematic misuse is different to use error, as described in MEDDEV guidance.
Table 14.1 PMPF plan template example – general elements and examples.

Please note that this table does not provide a comprehensive or prescriptive section of elements and methods. It is the manufacturer’s sole responsibility to define an appropriate concept.

<table>
<thead>
<tr>
<th>General methods and Procedures</th>
<th>Specific methods and procedures</th>
<th>Rationale for method and procedure appropriateness</th>
<th>Objectives</th>
<th>Frequency / timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scientific literature evaluation ^</td>
<td>Conduct literature search according to specified methodology. Evaluate new guidelines (e.g. technical or medical guidelines)</td>
<td>This method will provide the relevant scientific information on the biomarker and test. This method will also provide information on similar devices/state of the art</td>
<td>If applicable, review the performance data relating to equivalent or similar devices, and the current state of the art Verify that product claims are met Identify systematic misuse Identify safety issues Identify new limitations and contra-indications</td>
<td>Product class-dependent. TBD by the manufacturer</td>
</tr>
<tr>
<td>Feedback from users</td>
<td>Evaluate customer complaint data ^ Evaluate published data on user perspectives. Information from sales and training (e.g. surveys)</td>
<td>These methods will raise potential issues experienced by product users</td>
<td>Verify that product claims are met Identify systematic misuse Identify of new risks Identify new limitations and contra-indications</td>
<td>Product class-dependent. TBD by the manufacturer</td>
</tr>
<tr>
<td>Gathering of clinical experience gained</td>
<td>Post-market study data generation 1) Conduct company-sponsored or investigator-initiated post-market studies will allow further collection of safety and performance data, including large-scale data where applicable</td>
<td>Verify that product claims are met Identify safety issues Analyse the benefit/risk ratio Identify new risks</td>
<td>Product class-dependent. TBD by the manufacturer</td>
<td></td>
</tr>
</tbody>
</table>
market studies

2) Evaluation of patient registers, where applicable

<table>
<thead>
<tr>
<th>Market Studies</th>
<th>Evaluation of published experience gained by routine diagnostic testing</th>
<th>Verification that product claims are met</th>
<th>Product class-dependent. TBD by the manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>applicable</td>
<td>Evaluation of specific results, such as patient mean results</td>
<td>Identify new safety issues</td>
<td></td>
</tr>
<tr>
<td></td>
<td>These methods will allow further collection of safety</td>
<td>Analyse the benefit/risk ratio</td>
<td></td>
</tr>
<tr>
<td></td>
<td>and performance data</td>
<td>Identify new risks</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verify that product claims are met</td>
<td>Identify new limitations and</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>contra-indications</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>External / Internal Quality Assessment</th>
<th>Conduct external quality assessments at selected laboratories/customer sites, e.g. ring trials</th>
<th>Verify that product claims are met</th>
<th>Product class-dependent. TBD by the manufacturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data generation</td>
<td>This method will allow further collection of analytical performance data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Verify that product claims are met</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

^ Examples where PSUR data or post-market surveillance report data can be utilised, where available.

2) What are appropriate timelines for PMPF report updates?

The PMPF plan and/or triggers will determine the frequency/timeline of the PMPF update for a device. Accordingly, PMPF can be performed based on pre-planned dates and/or based on certain triggers, which will be defined in the PMPF plan, see question 3. The frequency of PMPF shall be determined by the manufacturer and the rationale for this shall be described in the PMPF plan. For class C and D products, the PMPF report shall be updated annually⁴ with important updates and the PMPF main findings will be included in the periodic safety update report (PSUR). If no action has been required according to the PMPF plan, for example, in instances where no triggers have occurred, nothing further is required, and this will be stated in the PMPF report update. If the manufacturer concludes no PMPF is required for a device, a justification for this shall be provided and documented within the performance evaluation report.
3) What elements can be pre-specified triggers for PMPF?

Pre-specified results can trigger additional tasks and activities. Pre-specified triggers for PMPF activities are based on their impact on product claims and benefit-risk and can include customer complaints, emergence of data from e.g. publications, external quality assessment programs.

For example, the emergence of new mutations or interference from medicinal products will likely trigger PMPF. The IVDR states that relevant new information should trigger a reassessment of the clinical evidence of the device thus ensuring safety and performance through a continuous process of performance evaluation\(^5\). Relevant data and information gathered through post-market surveillance, as well as lessons learned from any implemented preventive and/or corrective actions, should be used to update any relevant part of technical documentation, such as those relating to risk assessment and performance evaluation, and should also serve the purposes of transparency\(^6\).

4) What IVDR elements are linked to PMPF and what are the dependencies between these?

The PMPF plan is part of the Performance Evaluation Plan (PEP), and the PMPF evaluation report forms part of the performance evaluation report (PER). PMPF is included in post-market surveillance (PMS), and the PMPF shall be specifically addressed in the manufacturer’s PMS plan. Relevant information on the PMPF shall be included in the Summary of Safety and Performance (SSP), which shall be updated as soon as possible, where necessary. The Periodic Safety Update Report (PSUR) shall also contain the main findings of the PMPF and shall be part of the technical documentation. The dependencies between PMPF and other IVDR elements are illustrated in Figure 14.1 and Table 14.1 in this Q&A document. The Q&A on Documentation further describes the flow of plans and reports.
Table 14.2 PMPF and PMS requirements

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>POST-MARKET</strong></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-Market Surveillance Plan</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Post-Market Surveillance Report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Periodic Safety Update Report</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PMPF Plan</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>PMPF Report</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Performance Evaluation Report</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>Summary of Safety and Performance</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| **VIGILANCE**         |   |   |   |   |
| Manufacturer Incident Report | X | X | X | X |
| Periodic Summary Report | X | X | X | X |
| Trend Report           | X | X | X | X |
| Field Safety Corrective Action | X | X | X | X |
| Field Safety Notice    | X | X | X | X |

PMPF confirms safety and performance of the device throughout its expected lifecycle
- Previously unknown risks or limits to performance and contraindications
- Emergent risks on basis of factual evidence
- Continued applicability of the clinical evidence and of the benefit-risk ratio
- Possible systematic misuse

Periodic Safety Update Report (PSUR)
- Conclusions of the benefit-risk determination
- Main findings of the PMPF
- Volume of sales of device and an estimate of the size and other characteristic of the population using the device
- Usage frequency of the device if practicable

PMPF Plan and PMPF Report are used to update the Performance Evaluation Report
- Justification of approach taken to gather clinical evidence
- Literature search methodology and protocol
- Technology on which the device is based, intended purpose of the device and performance and safety claims
- Nature and extent of scientific validity and analytical and clinical performance data that has been evaluated
- Clinical evidence as the acceptable performance against the state of art in medicine

5) In what instances is PMPF not deemed appropriate?

Post-market surveillance is a requirement of the regulation, whereas PMPF activities may not be required where other PMS activities do not identify any triggers, such as for products where foreseeable or actual changes are less likely to negatively impact the benefit-risk ratio. If PMPF is deemed not appropriate, a justification shall be provided in PER (IVDR, Annex XIII, Part B (8)).

1) Class A - IVD Instrument – stand-alone:
   a. Justification: Performance is typically related to reagents running on the instruments; other PMS activities (see Figure 14.1) should be sufficient to monitor performance

2) Class A - Washing solution – separate, not included in IVD test/kit:
   a. Justification: Performance is typically related to the IVD test/kit. PMS activities of the IVD test/kit should be sufficient to monitor performance

3) Class B and C – Established and Standardized tests on the market:
   a. Justification: Sufficient data from other devices available to mitigate the risk so that other PMS activities should be sufficient to monitor performance
### Table 14.3 PMSF Plan

#### Example 1

<table>
<thead>
<tr>
<th><strong>Date and Version</strong></th>
<th>13 August 2019 / Version 001</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Name of the Device</strong></td>
<td>HIV Ab-Ag combo Assay</td>
</tr>
<tr>
<td><strong>Class</strong></td>
<td>D</td>
</tr>
<tr>
<td><strong>Intended Use</strong></td>
<td>Semi-quantitative enzyme immunoassay kit for the detection of HIV-1 p24 antigen and antibodies to HIV-1 (groups M and O) and HIV-2 in human serum or plasma. This kit can be used for both HIV Ag and HIV Ab screening of blood donations and as an aid in the diagnosis of HIV infection.</td>
</tr>
</tbody>
</table>

#### Aim:
- Verify Clinical Safety and Performance over expected lifetime
- Identify previously unknown risks or limits to performances and contra-indications
- Identify and analyze emergent risks on the basis of factual evidence
- Ensure continuous acceptability of the clinical evidence and the benefit risk ratio
- Identify possible systematic misuse

#### Benefit /risk ratio: Refer to “Product” Risk Management Plan document

#### Clinical Evidence, Performance: Refer to “Product” PER document

#### Performance of equivalent or similar devices and the current State of the Art: Refer to “Product” State of the Art Report document

#### References:
- CTS 2009/886/EC CS:
- Standards:

#### PMPF Time Schedule
The data will be reviewed each year and gathered in a report according to table 3 (PMPF plan example 1)
Table 14.4 PMPF plan example 1

<table>
<thead>
<tr>
<th>Examples</th>
<th>Specific methods and procedures</th>
<th>Rationale for method and procedure appropriateness</th>
<th>Objectives</th>
<th>Frequency / timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical experience gained</td>
<td>Collecting additional data from internal/external studies</td>
<td>To collect new performance information on the product</td>
<td>Appraise the sensitivity and specificity results</td>
<td>If new sample panels (seroconversion, sensitivity panels) are identified and available or new standard (ex WHO standard)</td>
</tr>
<tr>
<td>Clinical experience gained</td>
<td>Collecting additional data from internal/external studies</td>
<td>To collect new performance information on the product</td>
<td>Appraise the specificity and results</td>
<td>If complaints linked to specificity performance</td>
</tr>
<tr>
<td>Clinical experience gained</td>
<td>Conducting a post-market clinical study according Annex XIII IVDR /ISO 20/916</td>
<td>To collect new performance information on the product</td>
<td>Appraise the specificity or sensitivity results in other countries (with different prevalence, and different subtypes)</td>
<td>If new variants identified and available</td>
</tr>
<tr>
<td>Scientific literature search *</td>
<td>SOP on literature search</td>
<td>To collect new scientific information on the targeted marker</td>
<td>Look at new variants, subtypes</td>
<td>Regular literature survey</td>
</tr>
<tr>
<td></td>
<td>SOP on literature search</td>
<td>To collect new performance information on the product, on similar competitor products</td>
<td>Appraise the specificity or sensitivity results</td>
<td>Regular literature survey</td>
</tr>
<tr>
<td>Feedback from users ^</td>
<td>Investigate the data linked to the event</td>
<td>Complaint linked to performance</td>
<td>Improve sensitivity or specificity performances</td>
<td>Depending of occurrence of the event</td>
</tr>
</tbody>
</table>

^ This information may be extracted from the PSUR report data or post-market surveillance report data can be utilised, where available
### Example 2

<table>
<thead>
<tr>
<th>Date and Version</th>
<th>13 August 2019 / Version 001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of the Device</td>
<td>Influenza A &amp; B rapid diagnostic test</td>
</tr>
<tr>
<td>Class</td>
<td>C</td>
</tr>
<tr>
<td>Intended Use</td>
<td>Immunochromatographic assay for the qualitative detection of influenza A and B nucleoprotein antigens in nasopharyngeal (NP) swab and nasal swab specimens.</td>
</tr>
</tbody>
</table>

**Aim:**
- Verify Clinical Safety and Performance over expected lifetime
- Identify previously unknown risks or limits to performances and contra-indications
- Identify and analyze emergent risks on the basis of factual evidence
- Ensure continuous acceptability of the clinical evidence and the benefit risk ratio
- Identify possible systematic misuse

**Risk management:** Refer to “Product” Risk Management Plan document

**Clinical Evidence, Performance:** Refer to “Product” PER document

**Performance of equivalent or similar devices and the current State of the Art:** Refer to “Product” State of the Art Report document

**References:**
- Standards:

**PMPF Time Schedule**
The data will be reviewed each year and gathered in a report according to table 3 (PMPF plan example 2)
Table 14.5 PMPF plan example 2

<table>
<thead>
<tr>
<th>Examples - General Methods and Procedures</th>
<th>Specific methods and Procedures</th>
<th>Rationale for method and procedure appropriateness</th>
<th>Objectives</th>
<th>Frequency / timeline</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Clinical Experience gained</strong></td>
<td>Internal studies and/or post-market external clinical studies</td>
<td>Internal and/or external studies may be conducted to validate that the product continues to meet the product claims.</td>
<td>Verify that product claims are met</td>
<td>If product complaints emerge, or if information becomes available regarding new mutants or cross-reactants that have not previously been validated with the test</td>
</tr>
<tr>
<td><strong>Scientific literature search</strong></td>
<td>To collect new scientific information that is relevant for test performance, such as new mutants. To collect information on similar competitor products</td>
<td>SOP on literature search</td>
<td>Verify that product claims are met</td>
<td>Regular literature survey</td>
</tr>
<tr>
<td><strong>Feedback from users</strong></td>
<td>Evaluate customer complaint data</td>
<td>This method will raise issues with products in the field</td>
<td>Verify that product claims are met</td>
<td>Customer complaint data will be monitored continuously through PMS activities</td>
</tr>
</tbody>
</table>

* This information may be extracted from the PSUR report data or post-market surveillance report data can be utilised, where available.
### Table 14.6 PMPF Report

<table>
<thead>
<tr>
<th><strong>Date and Version</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State the PMPF plan date and version</td>
<td></td>
</tr>
<tr>
<td>State the PMPF report date and version</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Device identification</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Name:</td>
<td></td>
</tr>
<tr>
<td>Classification:</td>
<td></td>
</tr>
<tr>
<td>Intended use:</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Results</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State the results (for key elements see PMPF plan)</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th><strong>Conclusion(s)</strong></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>State the conclusion(s) and if needed action items, such as CAPA</td>
<td></td>
</tr>
</tbody>
</table>
References:


2. MHRA Draft guidance on the health institution exemption (HIE) – IVDR and MDR, draft v. 0.2, December 2017

3. MEDDEV 2.12-1 Rev 8, January 2013


7. ISO 20916 *In vitro* diagnostic medical devices – Clinical performance studies using specimens from human subjects – Good study practice

8. ISO/TC 210/WG 6 (Working Group 6): Application of post market surveillance systems to medical devices

About MedTech Europe

MedTech Europe is the European trade association for the medical technology industry including diagnostics, medical devices and digital health. Our members are national, European and multinational companies as well as a network of national medical technology associations who research, develop, manufacture, distribute and supply health-related technologies, services and solutions.

For more information, visit www.medtecheurope.org.

For further information on the content of this publication, please contact:

Oliver Bisazza
Director General
Industrial Policy
MedTech Europe
o.bisazza@medtecheurope.org

Reference: MedTech Europe Clinical Evidence Working Group

The In vitro Diagnostic Medical Devices Regulation contains several provisions that are capable of being given more than one interpretation. In the preparation of this series of Questions and Answers, MedTech Europe has used its best efforts to ensure that the opinions and advice expressed are sound. However, the Association makes no assertion that those opinions and advice are correct and it accepts no legal responsibility for them. Specific legal advice should be sought before acting on any of the topics covered. MedTech Europe reserves the right to change or amend this document at any time without notice in order to keep the information up to date.

Members are reminded that, while competent authorities and notified bodies may be helpful in providing views as to the meaning of the 2017/746 Regulation, it is ultimately for the courts to interpret legislation.